Step |
Hyp |
Ref |
Expression |
1 |
|
moi2.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → 𝜑 ) |
3 |
2 1
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) |
4 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
5 |
4 1
|
sbhypf |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
7 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
8 |
6 7
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) ) ) |
9 |
8
|
spcgv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) ) ) |
10 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
11 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
12 |
10 11
|
mo4f |
⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
13 |
|
sp |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
14 |
12 13
|
sylbi |
⊢ ( ∃* 𝑥 𝜑 → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
15 |
9 14
|
impel |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ) → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝐴 ) ) |
16 |
15
|
expd |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ) → ( 𝜑 → ( 𝜓 → 𝑥 = 𝐴 ) ) ) |
17 |
16
|
3impia |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝜓 → 𝑥 = 𝐴 ) ) |
18 |
3 17
|
impbid |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃* 𝑥 𝜑 ∧ 𝜑 ) → ( 𝑥 = 𝐴 ↔ 𝜓 ) ) |