Description: Equivalence theorem for the at-most-one quantifier. (Contributed by BJ, 7-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | mobi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜓 → 𝜑 ) ) ) | |
2 | moim | ⊢ ( ∀ 𝑥 ( 𝜓 → 𝜑 ) → ( ∃* 𝑥 𝜑 → ∃* 𝑥 𝜓 ) ) | |
3 | moim | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 ) ) | |
4 | 2 3 | impbid21d | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜓 → 𝜑 ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) ) ) |
5 | 4 | imp | ⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜓 → 𝜑 ) ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) ) |
6 | 1 5 | sylbi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) ) |