Metamath Proof Explorer


Theorem mobi

Description: Equivalence theorem for the at-most-one quantifier. (Contributed by BJ, 7-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)

Ref Expression
Assertion mobi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 albiim ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜓𝜑 ) ) )
2 moim ( ∀ 𝑥 ( 𝜓𝜑 ) → ( ∃* 𝑥 𝜑 → ∃* 𝑥 𝜓 ) )
3 moim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 ) )
4 2 3 impbid21d ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜑 ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) ) )
5 4 imp ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜓𝜑 ) ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) )
6 1 5 sylbi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) )