Metamath Proof Explorer


Theorem mobid

Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by NM, 8-Mar-1995) Remove dependency on ax-10 , ax-11 , ax-13 . (Revised by BJ, 14-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)

Ref Expression
Hypotheses mobid.1 𝑥 𝜑
mobid.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion mobid ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 mobid.1 𝑥 𝜑
2 mobid.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 2 alrimi ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
4 mobi ( ∀ 𝑥 ( 𝜓𝜒 ) → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 ) )
5 3 4 syl ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 ) )