Metamath Proof Explorer


Theorem mobidv

Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022)

Ref Expression
Hypothesis mobidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion mobidv ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 mobidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
3 mobi ( ∀ 𝑥 ( 𝜓𝜒 ) → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 ) )
4 2 3 syl ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 ) )