Metamath Proof Explorer


Theorem mobii

Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995) (Revised by Mario Carneiro, 17-Oct-2016) Avoid ax-5 . (Revised by Wolf Lammen, 24-Sep-2023)

Ref Expression
Hypothesis mobii.1 ( 𝜓𝜒 )
Assertion mobii ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 )

Proof

Step Hyp Ref Expression
1 mobii.1 ( 𝜓𝜒 )
2 1 biimpri ( 𝜒𝜓 )
3 2 moimi ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜒 )
4 1 biimpi ( 𝜓𝜒 )
5 4 moimi ( ∃* 𝑥 𝜒 → ∃* 𝑥 𝜓 )
6 3 5 impbii ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 𝜒 )