Metamath Proof Explorer


Theorem mod2eq0even

Description: An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)

Ref Expression
Assertion mod2eq0even ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 0 ↔ 2 ∥ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 2nn 2 ∈ ℕ
2 dvdsval3 ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ( 𝑁 mod 2 ) = 0 ) )
3 1 2 mpan ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ( 𝑁 mod 2 ) = 0 ) )
4 3 bicomd ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 0 ↔ 2 ∥ 𝑁 ) )