Step |
Hyp |
Ref |
Expression |
1 |
|
zeo |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
2 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
3 |
|
2rp |
⊢ 2 ∈ ℝ+ |
4 |
|
mod0 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( 𝑁 mod 2 ) = 0 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 0 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
6 |
5
|
biimpar |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( 𝑁 mod 2 ) = 0 ) |
7 |
|
eqeq1 |
⊢ ( ( 𝑁 mod 2 ) = 0 → ( ( 𝑁 mod 2 ) = 1 ↔ 0 = 1 ) ) |
8 |
|
0ne1 |
⊢ 0 ≠ 1 |
9 |
|
eqneqall |
⊢ ( 0 = 1 → ( 0 ≠ 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
10 |
8 9
|
mpi |
⊢ ( 0 = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
11 |
7 10
|
syl6bi |
⊢ ( ( 𝑁 mod 2 ) = 0 → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
12 |
6 11
|
syl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
13 |
12
|
expcom |
⊢ ( ( 𝑁 / 2 ) ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
14 |
|
peano2zm |
⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ∈ ℤ ) |
15 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
16 |
|
xp1d2m1eqxm1d2 |
⊢ ( 𝑁 ∈ ℂ → ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) = ( ( 𝑁 − 1 ) / 2 ) ) |
17 |
15 16
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) = ( ( 𝑁 − 1 ) / 2 ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑁 ∈ ℤ → ( ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ∈ ℤ ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
19 |
18
|
biimpd |
⊢ ( 𝑁 ∈ ℤ → ( ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ∈ ℤ → ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
20 |
14 19
|
mpan9 |
⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) |
21 |
|
oveq2 |
⊢ ( 𝑛 = ( ( 𝑁 − 1 ) / 2 ) → ( 2 · 𝑛 ) = ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 = ( ( 𝑁 − 1 ) / 2 ) ) → ( 2 · 𝑛 ) = ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) ) |
23 |
22
|
oveq1d |
⊢ ( ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 = ( ( 𝑁 − 1 ) / 2 ) ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) |
24 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
25 |
24
|
zcnd |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℂ ) |
26 |
|
2cnd |
⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℂ ) |
27 |
|
2ne0 |
⊢ 2 ≠ 0 |
28 |
27
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 2 ≠ 0 ) |
29 |
25 26 28
|
divcan2d |
⊢ ( 𝑁 ∈ ℤ → ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) = ( 𝑁 − 1 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑁 ∈ ℤ → ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
31 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
32 |
15 31
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
33 |
30 32
|
eqtrd |
⊢ ( 𝑁 ∈ ℤ → ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) = 𝑁 ) |
34 |
33
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 = ( ( 𝑁 − 1 ) / 2 ) ) → ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) = 𝑁 ) |
35 |
23 34
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 = ( ( 𝑁 − 1 ) / 2 ) ) → ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
36 |
20 35
|
rspcedeq1vd |
⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
37 |
36
|
a1d |
⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
38 |
37
|
ex |
⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
39 |
13 38
|
jaoi |
⊢ ( ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
40 |
1 39
|
mpcom |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
41 |
|
oveq1 |
⊢ ( 𝑁 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝑁 mod 2 ) = ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) ) |
42 |
41
|
eqcoms |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑁 mod 2 ) = ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) ) |
43 |
|
2cnd |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) |
44 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
45 |
43 44
|
mulcomd |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) = ( 𝑛 · 2 ) ) |
46 |
45
|
oveq1d |
⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) mod 2 ) = ( ( 𝑛 · 2 ) mod 2 ) ) |
47 |
|
mulmod0 |
⊢ ( ( 𝑛 ∈ ℤ ∧ 2 ∈ ℝ+ ) → ( ( 𝑛 · 2 ) mod 2 ) = 0 ) |
48 |
3 47
|
mpan2 |
⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) mod 2 ) = 0 ) |
49 |
46 48
|
eqtrd |
⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) mod 2 ) = 0 ) |
50 |
49
|
oveq1d |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) = ( 0 + 1 ) ) |
51 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
52 |
50 51
|
eqtrdi |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) = 1 ) |
53 |
52
|
oveq1d |
⊢ ( 𝑛 ∈ ℤ → ( ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) mod 2 ) = ( 1 mod 2 ) ) |
54 |
|
2z |
⊢ 2 ∈ ℤ |
55 |
54
|
a1i |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
56 |
|
id |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) |
57 |
55 56
|
zmulcld |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
58 |
57
|
zred |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℝ ) |
59 |
|
1red |
⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℝ ) |
60 |
3
|
a1i |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℝ+ ) |
61 |
|
modaddmod |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) ) |
62 |
58 59 60 61
|
syl3anc |
⊢ ( 𝑛 ∈ ℤ → ( ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) ) |
63 |
|
2re |
⊢ 2 ∈ ℝ |
64 |
|
1lt2 |
⊢ 1 < 2 |
65 |
63 64
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 1 < 2 ) |
66 |
|
1mod |
⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ( 1 mod 2 ) = 1 ) |
67 |
65 66
|
mp1i |
⊢ ( 𝑛 ∈ ℤ → ( 1 mod 2 ) = 1 ) |
68 |
53 62 67
|
3eqtr3d |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) = 1 ) |
69 |
68
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) = 1 ) |
70 |
42 69
|
sylan9eqr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) → ( 𝑁 mod 2 ) = 1 ) |
71 |
70
|
rexlimdva2 |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑁 mod 2 ) = 1 ) ) |
72 |
40 71
|
impbid |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
73 |
|
odd2np1 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
74 |
72 73
|
bitr4d |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 ↔ ¬ 2 ∥ 𝑁 ) ) |