Step |
Hyp |
Ref |
Expression |
1 |
|
modcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
2 |
1
|
anim1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
3 |
2
|
3impa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
5 |
|
modge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) |
8 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
10 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℝ ) |
13 |
|
rpre |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
16 |
|
modlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
19 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ≤ 𝐶 ) |
20 |
9 12 15 18 19
|
ltletrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( 𝐴 mod 𝐵 ) < 𝐶 ) |
21 |
|
modid |
⊢ ( ( ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐶 ) ) → ( ( 𝐴 mod 𝐵 ) mod 𝐶 ) = ( 𝐴 mod 𝐵 ) ) |
22 |
4 7 20 21
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐶 ) → ( ( 𝐴 mod 𝐵 ) mod 𝐶 ) = ( 𝐴 mod 𝐵 ) ) |