Description: Absorption law for modulo. (Contributed by NM, 29-Dec-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | modabs2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
2 | 1 | leidd | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≤ 𝐵 ) |
3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ≤ 𝐵 ) |
4 | modabs | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐵 ≤ 𝐵 ) → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) | |
5 | 4 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ≤ 𝐵 → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) ) |
6 | 5 | 3anidm23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ≤ 𝐵 → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) ) |
7 | 3 6 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) |