Metamath Proof Explorer


Theorem modabs2

Description: Absorption law for modulo. (Contributed by NM, 29-Dec-2008)

Ref Expression
Assertion modabs2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐵 ∈ ℝ+𝐵 ∈ ℝ )
2 1 leidd ( 𝐵 ∈ ℝ+𝐵𝐵 )
3 2 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵𝐵 )
4 modabs ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ 𝐵𝐵 ) → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) )
5 4 ex ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( 𝐵𝐵 → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) )
6 5 3anidm23 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵𝐵 → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) ) )
7 3 6 mpd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) mod 𝐵 ) = ( 𝐴 mod 𝐵 ) )