Metamath Proof Explorer


Theorem moddifz

Description: The modulo operation differs from A by an integer multiple of B . (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Assertion moddifz ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 moddiffl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) )
2 rerpdivcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ )
3 2 flcld ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℤ )
4 1 3 eqeltrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝐵 ) ) / 𝐵 ) ∈ ℤ )