| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modid0 | ⊢ ( 𝑀  ∈  ℝ+  →  ( 𝑀  mod  𝑀 )  =  0 ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝑀  mod  𝑀 )  =  0 ) | 
						
							| 3 |  | modge0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  0  ≤  ( 𝐴  mod  𝑀 ) ) | 
						
							| 4 | 2 3 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝑀  mod  𝑀 )  ≤  ( 𝐴  mod  𝑀 ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | rpre | ⊢ ( 𝑀  ∈  ℝ+  →  𝑀  ∈  ℝ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  𝑀  ∈  ℝ ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  𝑀  ∈  ℝ+ ) | 
						
							| 9 |  | modsubdir | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝑀  mod  𝑀 )  ≤  ( 𝐴  mod  𝑀 )  ↔  ( ( 𝐴  −  𝑀 )  mod  𝑀 )  =  ( ( 𝐴  mod  𝑀 )  −  ( 𝑀  mod  𝑀 ) ) ) ) | 
						
							| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝑀  mod  𝑀 )  ≤  ( 𝐴  mod  𝑀 )  ↔  ( ( 𝐴  −  𝑀 )  mod  𝑀 )  =  ( ( 𝐴  mod  𝑀 )  −  ( 𝑀  mod  𝑀 ) ) ) ) | 
						
							| 11 | 4 10 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  −  𝑀 )  mod  𝑀 )  =  ( ( 𝐴  mod  𝑀 )  −  ( 𝑀  mod  𝑀 ) ) ) | 
						
							| 12 | 2 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  0  =  ( 𝑀  mod  𝑀 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝑀 )  −  0 )  =  ( ( 𝐴  mod  𝑀 )  −  ( 𝑀  mod  𝑀 ) ) ) | 
						
							| 14 |  | modcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐴  mod  𝑀 )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐴  mod  𝑀 )  ∈  ℂ ) | 
						
							| 16 | 15 | subid1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝑀 )  −  0 )  =  ( 𝐴  mod  𝑀 ) ) | 
						
							| 17 | 11 13 16 | 3eqtr2rd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐴  mod  𝑀 )  =  ( ( 𝐴  −  𝑀 )  mod  𝑀 ) ) |