| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modid0 |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 mod 𝑀 ) = 0 ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝑀 mod 𝑀 ) = 0 ) |
| 3 |
|
modge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝑀 ) ) |
| 4 |
2 3
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝑀 mod 𝑀 ) ≤ ( 𝐴 mod 𝑀 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 6 |
|
rpre |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
| 8 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) |
| 9 |
|
modsubdir |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝑀 mod 𝑀 ) ≤ ( 𝐴 mod 𝑀 ) ↔ ( ( 𝐴 − 𝑀 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) − ( 𝑀 mod 𝑀 ) ) ) ) |
| 10 |
5 7 8 9
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝑀 mod 𝑀 ) ≤ ( 𝐴 mod 𝑀 ) ↔ ( ( 𝐴 − 𝑀 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) − ( 𝑀 mod 𝑀 ) ) ) ) |
| 11 |
4 10
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 − 𝑀 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) − ( 𝑀 mod 𝑀 ) ) ) |
| 12 |
2
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 = ( 𝑀 mod 𝑀 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) − 0 ) = ( ( 𝐴 mod 𝑀 ) − ( 𝑀 mod 𝑀 ) ) ) |
| 14 |
|
modcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
| 16 |
15
|
subid1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) − 0 ) = ( 𝐴 mod 𝑀 ) ) |
| 17 |
11 13 16
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) = ( ( 𝐴 − 𝑀 ) mod 𝑀 ) ) |