| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2l | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐶  ∈  ℕ0  ∧  𝐷  ∈  ℝ+ )  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  𝐶  ∈  ℕ0 ) | 
						
							| 2 |  | id | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) ) ) | 
						
							| 3 | 2 | 3adant2l | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐶  ∈  ℕ0  ∧  𝐷  ∈  ℝ+ )  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 0 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐴 ↑ 0 )  mod  𝐷 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 𝐵 ↑ 𝑥 )  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 0 )  mod  𝐷 ) ) | 
						
							| 8 | 5 7 | eqeq12d | ⊢ ( 𝑥  =  0  →  ( ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 )  ↔  ( ( 𝐴 ↑ 0 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 0 )  mod  𝐷 ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 ) )  ↔  ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 0 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 0 )  mod  𝐷 ) ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑥  =  𝑘  →  ( 𝐵 ↑ 𝑥 )  =  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) ) | 
						
							| 14 | 11 13 | eqeq12d | ⊢ ( 𝑥  =  𝑘  →  ( ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 )  ↔  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑥  =  𝑘  →  ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 ) )  ↔  ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) ) ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  mod  𝐷 ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( 𝐵 ↑ 𝑥 )  =  ( 𝐵 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ ( 𝑘  +  1 ) )  mod  𝐷 ) ) | 
						
							| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 )  ↔  ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  mod  𝐷 )  =  ( ( 𝐵 ↑ ( 𝑘  +  1 ) )  mod  𝐷 ) ) ) | 
						
							| 21 | 20 | imbi2d | ⊢ ( 𝑥  =  ( 𝑘  +  1 )  →  ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 ) )  ↔  ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  mod  𝐷 )  =  ( ( 𝐵 ↑ ( 𝑘  +  1 ) )  mod  𝐷 ) ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 𝐶 ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐴 ↑ 𝐶 )  mod  𝐷 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝐵 ↑ 𝑥 )  =  ( 𝐵 ↑ 𝐶 ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝐶 )  mod  𝐷 ) ) | 
						
							| 26 | 23 25 | eqeq12d | ⊢ ( 𝑥  =  𝐶  →  ( ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 )  ↔  ( ( 𝐴 ↑ 𝐶 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝐶 )  mod  𝐷 ) ) ) | 
						
							| 27 | 26 | imbi2d | ⊢ ( 𝑥  =  𝐶  →  ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝑥 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑥 )  mod  𝐷 ) )  ↔  ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝐶 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝐶 )  mod  𝐷 ) ) ) ) | 
						
							| 28 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 29 |  | exp0 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 31 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 32 |  | exp0 | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵 ↑ 0 )  =  1 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝐵  ∈  ℤ  →  ( 𝐵 ↑ 0 )  =  1 ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( 𝐵  ∈  ℤ  →  1  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 35 | 30 34 | sylan9eq | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴 ↑ 0 )  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴 ↑ 0 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 0 )  mod  𝐷 ) ) | 
						
							| 37 | 36 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 0 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 0 )  mod  𝐷 ) ) | 
						
							| 38 |  | simp21l | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  𝐴  ∈  ℤ ) | 
						
							| 39 |  | simp1 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 40 |  | zexpcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 42 |  | simp21r | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 43 |  | zexpcl | ⊢ ( ( 𝐵  ∈  ℤ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 44 | 42 39 43 | syl2anc | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( 𝐵 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 45 |  | simp22 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  𝐷  ∈  ℝ+ ) | 
						
							| 46 |  | simp3 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) ) | 
						
							| 47 |  | simp23 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) ) | 
						
							| 48 | 41 44 38 42 45 46 47 | modmul12d | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 )  mod  𝐷 )  =  ( ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 )  mod  𝐷 ) ) | 
						
							| 49 | 38 | zcnd | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 50 |  | expp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) | 
						
							| 51 | 49 39 50 | syl2anc | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  mod  𝐷 )  =  ( ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 )  mod  𝐷 ) ) | 
						
							| 53 | 42 | zcnd | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 54 |  | expp1 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐵 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 ) ) | 
						
							| 55 | 53 39 54 | syl2anc | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( 𝐵 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 ) ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( ( 𝐵 ↑ ( 𝑘  +  1 ) )  mod  𝐷 )  =  ( ( ( 𝐵 ↑ 𝑘 )  ·  𝐵 )  mod  𝐷 ) ) | 
						
							| 57 | 48 52 56 | 3eqtr4d | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  ∧  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  mod  𝐷 )  =  ( ( 𝐵 ↑ ( 𝑘  +  1 ) )  mod  𝐷 ) ) | 
						
							| 58 | 57 | 3exp | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 )  →  ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  mod  𝐷 )  =  ( ( 𝐵 ↑ ( 𝑘  +  1 ) )  mod  𝐷 ) ) ) ) | 
						
							| 59 | 58 | a2d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝑘 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝑘 )  mod  𝐷 ) )  →  ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ ( 𝑘  +  1 ) )  mod  𝐷 )  =  ( ( 𝐵 ↑ ( 𝑘  +  1 ) )  mod  𝐷 ) ) ) ) | 
						
							| 60 | 9 15 21 27 37 59 | nn0ind | ⊢ ( 𝐶  ∈  ℕ0  →  ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐷  ∈  ℝ+  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝐶 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝐶 )  mod  𝐷 ) ) ) | 
						
							| 61 | 1 3 60 | sylc | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐶  ∈  ℕ0  ∧  𝐷  ∈  ℝ+ )  ∧  ( 𝐴  mod  𝐷 )  =  ( 𝐵  mod  𝐷 ) )  →  ( ( 𝐴 ↑ 𝐶 )  mod  𝐷 )  =  ( ( 𝐵 ↑ 𝐶 )  mod  𝐷 ) ) |