| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → 𝐶 ∈ ℕ0 ) |
| 2 |
|
id |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ) |
| 3 |
2
|
3adant2l |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐴 ↑ 0 ) mod 𝐷 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐵 ↑ 𝑥 ) = ( 𝐵 ↑ 0 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) |
| 8 |
5 7
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ↔ ( ( 𝐴 ↑ 0 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ) ↔ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 0 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ↑ 𝑥 ) = ( 𝐵 ↑ 𝑘 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) |
| 14 |
11 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ↔ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ) ↔ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐵 ↑ 𝑥 ) = ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) |
| 20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ↔ ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ) ↔ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝐶 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ↑ 𝑥 ) = ( 𝐵 ↑ 𝐶 ) ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) |
| 26 |
23 25
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ↔ ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ) ↔ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) ) ) |
| 28 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 29 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
| 30 |
28 29
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 0 ) = 1 ) |
| 31 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 32 |
|
exp0 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 0 ) = 1 ) |
| 33 |
31 32
|
syl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 0 ) = 1 ) |
| 34 |
33
|
eqcomd |
⊢ ( 𝐵 ∈ ℤ → 1 = ( 𝐵 ↑ 0 ) ) |
| 35 |
30 34
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑ 0 ) = ( 𝐵 ↑ 0 ) ) |
| 36 |
35
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ↑ 0 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) |
| 37 |
36
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 0 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) |
| 38 |
|
simp21l |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐴 ∈ ℤ ) |
| 39 |
|
simp1 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝑘 ∈ ℕ0 ) |
| 40 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) |
| 41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) |
| 42 |
|
simp21r |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐵 ∈ ℤ ) |
| 43 |
|
zexpcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℤ ) |
| 44 |
42 39 43
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐵 ↑ 𝑘 ) ∈ ℤ ) |
| 45 |
|
simp22 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐷 ∈ ℝ+ ) |
| 46 |
|
simp3 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) |
| 47 |
|
simp23 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) |
| 48 |
41 44 38 42 45 46 47
|
modmul12d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) mod 𝐷 ) = ( ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) mod 𝐷 ) ) |
| 49 |
38
|
zcnd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐴 ∈ ℂ ) |
| 50 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 51 |
49 39 50
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 52 |
51
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) mod 𝐷 ) ) |
| 53 |
42
|
zcnd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐵 ∈ ℂ ) |
| 54 |
|
expp1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 55 |
53 39 54
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 56 |
55
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) mod 𝐷 ) ) |
| 57 |
48 52 56
|
3eqtr4d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) |
| 58 |
57
|
3exp |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) ) ) |
| 59 |
58
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) ) ) |
| 60 |
9 15 21 27 37 59
|
nn0ind |
⊢ ( 𝐶 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) ) |
| 61 |
1 3 60
|
sylc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) |