Description: Lemma 1 for modfsummods . (Contributed by Alexander van der Vekens, 1-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | modfsummodslem1 | ⊢ ( ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑧 } ) 𝐵 ∈ ℤ → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
2 | elun2 | ⊢ ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ) | |
3 | 1 2 | ax-mp | ⊢ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) |
4 | rspcsbela | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) | |
5 | 3 4 | mpan | ⊢ ( ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑧 } ) 𝐵 ∈ ℤ → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |