Metamath Proof Explorer


Theorem modfsummodslem1

Description: Lemma 1 for modfsummods . (Contributed by Alexander van der Vekens, 1-Sep-2018)

Ref Expression
Assertion modfsummodslem1 ( ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑧 } ) 𝐵 ∈ ℤ → 𝑧 / 𝑘 𝐵 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 vsnid 𝑧 ∈ { 𝑧 }
2 elun2 ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) )
3 1 2 ax-mp 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } )
4 rspcsbela ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ∧ ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) → 𝑧 / 𝑘 𝐵 ∈ ℤ )
5 3 4 mpan ( ∀ 𝑘 ∈ ( 𝐴 ∪ { 𝑧 } ) 𝐵 ∈ ℤ → 𝑧 / 𝑘 𝐵 ∈ ℤ )