Metamath Proof Explorer


Theorem modid0

Description: A positive real number modulo itself is 0. (Contributed by Alexander van der Vekens, 15-May-2018)

Ref Expression
Assertion modid0 ( 𝑁 ∈ ℝ+ → ( 𝑁 mod 𝑁 ) = 0 )

Proof

Step Hyp Ref Expression
1 rpcn ( 𝑁 ∈ ℝ+𝑁 ∈ ℂ )
2 rpne0 ( 𝑁 ∈ ℝ+𝑁 ≠ 0 )
3 1 2 dividd ( 𝑁 ∈ ℝ+ → ( 𝑁 / 𝑁 ) = 1 )
4 1z 1 ∈ ℤ
5 3 4 eqeltrdi ( 𝑁 ∈ ℝ+ → ( 𝑁 / 𝑁 ) ∈ ℤ )
6 rpre ( 𝑁 ∈ ℝ+𝑁 ∈ ℝ )
7 mod0 ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝑁 mod 𝑁 ) = 0 ↔ ( 𝑁 / 𝑁 ) ∈ ℤ ) )
8 6 7 mpancom ( 𝑁 ∈ ℝ+ → ( ( 𝑁 mod 𝑁 ) = 0 ↔ ( 𝑁 / 𝑁 ) ∈ ℤ ) )
9 5 8 mpbird ( 𝑁 ∈ ℝ+ → ( 𝑁 mod 𝑁 ) = 0 )