Step |
Hyp |
Ref |
Expression |
1 |
|
modge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) |
2 |
|
modlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
3 |
1 2
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ) |
4 |
|
breq2 |
⊢ ( ( 𝐴 mod 𝐵 ) = 𝐴 → ( 0 ≤ ( 𝐴 mod 𝐵 ) ↔ 0 ≤ 𝐴 ) ) |
5 |
|
breq1 |
⊢ ( ( 𝐴 mod 𝐵 ) = 𝐴 → ( ( 𝐴 mod 𝐵 ) < 𝐵 ↔ 𝐴 < 𝐵 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( ( 𝐴 mod 𝐵 ) = 𝐴 → ( ( 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
7 |
3 6
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 𝐴 → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
8 |
|
modid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) |
9 |
8
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) ) |
10 |
7 9
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 𝐴 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |