| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ( ℝ  ∖  ℚ )  ↔  ( ( 𝐴  /  𝐵 )  ∈  ℝ  ∧  ¬  ( 𝐴  /  𝐵 )  ∈  ℚ ) ) | 
						
							| 2 |  | modval | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  mod  𝐵 )  =  ( 𝐴  −  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( 𝐴  −  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) )  =  0 ) ) | 
						
							| 4 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐴  ∈  ℂ ) | 
						
							| 6 |  | rpre | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℝ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐵  ∈  ℝ ) | 
						
							| 8 |  | refldivcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℝ ) | 
						
							| 9 | 7 8 | remulcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 11 | 5 10 | subeq0ad | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  −  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) )  =  0  ↔  𝐴  =  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) ) ) | 
						
							| 12 |  | rerpdivcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  /  𝐵 )  ∈  ℝ ) | 
						
							| 13 |  | reflcl | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ ) | 
						
							| 15 | 12 14 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ ) | 
						
							| 16 |  | rpcnne0 | ⊢ ( 𝐵  ∈  ℝ+  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 18 |  | divmul2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝐴  /  𝐵 )  =  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ↔  𝐴  =  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) ) ) | 
						
							| 19 | 5 15 17 18 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  =  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ↔  𝐴  =  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) ) ) | 
						
							| 20 |  | eqcom | ⊢ ( ( 𝐴  /  𝐵 )  =  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ↔  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 ) ) | 
						
							| 21 | 19 20 | bitr3di | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  =  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) )  ↔  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 22 | 3 11 21 | 3bitrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 23 |  | flidz | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 )  ↔  ( 𝐴  /  𝐵 )  ∈  ℤ ) ) | 
						
							| 24 |  | zq | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℤ  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) | 
						
							| 25 | 23 24 | biimtrdi | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) ) | 
						
							| 26 | 12 25 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) ) | 
						
							| 27 | 22 26 | sylbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) ) | 
						
							| 28 | 27 | necon3bd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ¬  ( 𝐴  /  𝐵 )  ∈  ℚ  →  ( 𝐴  mod  𝐵 )  ≠  0 ) ) | 
						
							| 29 | 28 | adantld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( ( 𝐴  /  𝐵 )  ∈  ℝ  ∧  ¬  ( 𝐴  /  𝐵 )  ∈  ℚ )  →  ( 𝐴  mod  𝐵 )  ≠  0 ) ) | 
						
							| 30 | 1 29 | biimtrid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ∈  ( ℝ  ∖  ℚ )  →  ( 𝐴  mod  𝐵 )  ≠  0 ) ) | 
						
							| 31 | 30 | 3impia | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐴  /  𝐵 )  ∈  ( ℝ  ∖  ℚ ) )  →  ( 𝐴  mod  𝐵 )  ≠  0 ) |