Metamath Proof Explorer


Theorem modlteq

Description: Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021)

Ref Expression
Assertion modlteq ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 mod 𝑁 ) = ( 𝐽 mod 𝑁 ) ↔ 𝐼 = 𝐽 ) )

Proof

Step Hyp Ref Expression
1 zmodidfzoimp ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 mod 𝑁 ) = 𝐼 )
2 zmodidfzoimp ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 mod 𝑁 ) = 𝐽 )
3 1 2 eqeqan12d ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 mod 𝑁 ) = ( 𝐽 mod 𝑁 ) ↔ 𝐼 = 𝐽 ) )