Metamath Proof Explorer
Description: Two nonnegative integers less than the modulus are equal iff they are
equal modulo the modulus. (Contributed by AV, 14-Mar-2021)
|
|
Ref |
Expression |
|
Assertion |
modlteq |
⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 mod 𝑁 ) = ( 𝐽 mod 𝑁 ) ↔ 𝐼 = 𝐽 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
zmodidfzoimp |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 mod 𝑁 ) = 𝐼 ) |
2 |
|
zmodidfzoimp |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 mod 𝑁 ) = 𝐽 ) |
3 |
1 2
|
eqeqan12d |
⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 mod 𝑁 ) = ( 𝐽 mod 𝑁 ) ↔ 𝐼 = 𝐽 ) ) |