| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 |  | modaddmod | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( ( 𝐴  mod  𝑀 )  +  1 )  mod  𝑀 )  =  ( ( 𝐴  +  1 )  mod  𝑀 ) ) | 
						
							| 3 | 1 2 | mp3an2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( ( 𝐴  mod  𝑀 )  +  1 )  mod  𝑀 )  =  ( ( 𝐴  +  1 )  mod  𝑀 ) ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  +  1 )  mod  𝑀 )  =  ( ( ( 𝐴  mod  𝑀 )  +  1 )  mod  𝑀 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  ∧  ( 𝐴  mod  𝑀 )  =  ( 𝑀  −  1 ) )  →  ( ( 𝐴  +  1 )  mod  𝑀 )  =  ( ( ( 𝐴  mod  𝑀 )  +  1 )  mod  𝑀 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( ( 𝐴  mod  𝑀 )  =  ( 𝑀  −  1 )  →  ( ( 𝐴  mod  𝑀 )  +  1 )  =  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( ( 𝐴  mod  𝑀 )  =  ( 𝑀  −  1 )  →  ( ( ( 𝐴  mod  𝑀 )  +  1 )  mod  𝑀 )  =  ( ( ( 𝑀  −  1 )  +  1 )  mod  𝑀 ) ) | 
						
							| 8 |  | rpcn | ⊢ ( 𝑀  ∈  ℝ+  →  𝑀  ∈  ℂ ) | 
						
							| 9 |  | npcan1 | ⊢ ( 𝑀  ∈  ℂ  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑀  ∈  ℝ+  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑀  ∈  ℝ+  →  ( ( ( 𝑀  −  1 )  +  1 )  mod  𝑀 )  =  ( 𝑀  mod  𝑀 ) ) | 
						
							| 12 |  | modid0 | ⊢ ( 𝑀  ∈  ℝ+  →  ( 𝑀  mod  𝑀 )  =  0 ) | 
						
							| 13 | 11 12 | eqtrd | ⊢ ( 𝑀  ∈  ℝ+  →  ( ( ( 𝑀  −  1 )  +  1 )  mod  𝑀 )  =  0 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( ( 𝑀  −  1 )  +  1 )  mod  𝑀 )  =  0 ) | 
						
							| 15 | 7 14 | sylan9eqr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  ∧  ( 𝐴  mod  𝑀 )  =  ( 𝑀  −  1 ) )  →  ( ( ( 𝐴  mod  𝑀 )  +  1 )  mod  𝑀 )  =  0 ) | 
						
							| 16 | 5 15 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  ∧  ( 𝐴  mod  𝑀 )  =  ( 𝑀  −  1 ) )  →  ( ( 𝐴  +  1 )  mod  𝑀 )  =  0 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝑀 )  =  ( 𝑀  −  1 )  →  ( ( 𝐴  +  1 )  mod  𝑀 )  =  0 ) ) |