Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℤ ) |
2 |
1
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝑖 ∈ ℤ ) |
3 |
|
eqcom |
⊢ ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( ( 𝑖 · 𝑀 ) + 𝐵 ) = 𝐴 ) |
4 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
7 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
8 |
|
modcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
12 |
|
eleq1 |
⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( ( 𝐴 mod 𝑀 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( ( 𝐴 mod 𝑀 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
14 |
11 13
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → 𝐵 ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
16 |
|
zcn |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℂ ) |
17 |
16
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℂ ) |
18 |
|
rpcn |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℂ ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
21 |
17 20
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝑖 · 𝑀 ) ∈ ℂ ) |
22 |
6 15 21
|
subadd2d |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ↔ ( ( 𝑖 · 𝑀 ) + 𝐵 ) = 𝐴 ) ) |
23 |
3 22
|
bitr4id |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) |
24 |
4
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → 𝐴 ∈ ℂ ) |
25 |
24 14
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
26 |
25
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
27 |
|
rpcnne0 |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
30 |
|
divmul3 |
⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) |
31 |
26 17 29 30
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝐵 = ( 𝐴 mod 𝑀 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 − ( 𝐴 mod 𝑀 ) ) ) |
33 |
32
|
oveq1d |
⊢ ( 𝐵 = ( 𝐴 mod 𝑀 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
34 |
33
|
eqcoms |
⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
37 |
|
moddiffl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
38 |
7 37
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
40 |
36 39
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
41 |
40
|
eqeq1d |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 ) ) |
42 |
23 31 41
|
3bitr2d |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 ) ) |
43 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
44 |
7 43
|
jca |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
45 |
|
rpregt0 |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) |
46 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → 0 ≤ ( 𝐴 / 𝑀 ) ) |
47 |
44 45 46
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( 𝐴 / 𝑀 ) ) |
48 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
49 |
|
rpre |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) |
50 |
49
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
51 |
|
rpne0 |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ≠ 0 ) |
52 |
51
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ≠ 0 ) |
53 |
48 50 52
|
redivcld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 / 𝑀 ) ∈ ℝ ) |
54 |
|
0z |
⊢ 0 ∈ ℤ |
55 |
|
flge |
⊢ ( ( ( 𝐴 / 𝑀 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( 𝐴 / 𝑀 ) ↔ 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) ) |
56 |
53 54 55
|
sylancl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 0 ≤ ( 𝐴 / 𝑀 ) ↔ 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) ) |
57 |
47 56
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
58 |
|
breq2 |
⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → ( 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ↔ 0 ≤ 𝑖 ) ) |
59 |
57 58
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → 0 ≤ 𝑖 ) ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → 0 ≤ 𝑖 ) ) |
61 |
42 60
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) → 0 ≤ 𝑖 ) ) |
62 |
61
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 0 ≤ 𝑖 ) |
63 |
|
elnn0z |
⊢ ( 𝑖 ∈ ℕ0 ↔ ( 𝑖 ∈ ℤ ∧ 0 ≤ 𝑖 ) ) |
64 |
2 62 63
|
sylanbrc |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝑖 ∈ ℕ0 ) |
65 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 · 𝑀 ) = ( 𝑖 · 𝑀 ) ) |
66 |
65
|
oveq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 · 𝑀 ) + 𝐵 ) = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) |
67 |
66
|
eqeq2d |
⊢ ( 𝑘 = 𝑖 → ( 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ↔ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
68 |
67
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ∧ 𝑘 = 𝑖 ) → ( 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ↔ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
69 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) |
70 |
64 68 69
|
rspcedvd |
⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) |
71 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
72 |
|
modmuladdim |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
73 |
71 72
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
74 |
73
|
imp |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) |
75 |
70 74
|
r19.29a |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) |
76 |
75
|
ex |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |