Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
3 |
|
zsubcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
6 |
|
nnz |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) |
7 |
|
nnne0 |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ≠ 0 ) |
8 |
6 7
|
jca |
⊢ ( 𝐶 ∈ ℕ → ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) |
11 |
|
dvdscmulr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝑀 ) ∥ ( 𝐶 · ( 𝐴 − 𝐵 ) ) ↔ 𝑀 ∥ ( 𝐴 − 𝐵 ) ) ) |
12 |
11
|
bicomd |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ( 𝐶 · 𝑀 ) ∥ ( 𝐶 · ( 𝐴 − 𝐵 ) ) ) ) |
13 |
2 5 10 12
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ( 𝐶 · 𝑀 ) ∥ ( 𝐶 · ( 𝐴 − 𝐵 ) ) ) ) |
14 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
15 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
16 |
|
nncn |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℂ ) |
17 |
14 15 16
|
3anim123i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
18 |
|
3anrot |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
20 |
|
subdi |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) |
23 |
22
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐶 · 𝑀 ) ∥ ( 𝐶 · ( 𝐴 − 𝐵 ) ) ↔ ( 𝐶 · 𝑀 ) ∥ ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) ) |
24 |
13 23
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ( 𝐶 · 𝑀 ) ∥ ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) ) |
25 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
26 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
28 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
30 |
|
moddvds |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 − 𝐵 ) ) ) |
31 |
25 27 29 30
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 − 𝐵 ) ) ) |
32 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝐶 ∈ ℕ ) |
33 |
32 25
|
nnmulcld |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 · 𝑀 ) ∈ ℕ ) |
34 |
6
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
35 |
34 26
|
zmulcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 · 𝐴 ) ∈ ℤ ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 · 𝐴 ) ∈ ℤ ) |
37 |
34 28
|
zmulcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 · 𝐵 ) ∈ ℤ ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 · 𝐵 ) ∈ ℤ ) |
39 |
|
moddvds |
⊢ ( ( ( 𝐶 · 𝑀 ) ∈ ℕ ∧ ( 𝐶 · 𝐴 ) ∈ ℤ ∧ ( 𝐶 · 𝐵 ) ∈ ℤ ) → ( ( ( 𝐶 · 𝐴 ) mod ( 𝐶 · 𝑀 ) ) = ( ( 𝐶 · 𝐵 ) mod ( 𝐶 · 𝑀 ) ) ↔ ( 𝐶 · 𝑀 ) ∥ ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) ) |
40 |
33 36 38 39
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( ( 𝐶 · 𝐴 ) mod ( 𝐶 · 𝑀 ) ) = ( ( 𝐶 · 𝐵 ) mod ( 𝐶 · 𝑀 ) ) ↔ ( 𝐶 · 𝑀 ) ∥ ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) ) |
41 |
24 31 40
|
3bitr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( ( 𝐶 · 𝐴 ) mod ( 𝐶 · 𝑀 ) ) = ( ( 𝐶 · 𝐵 ) mod ( 𝐶 · 𝑀 ) ) ) ) |