| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  𝑀  ∈  ℝ+ ) | 
						
							| 5 | 3 4 | modcld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐵  mod  𝑀 )  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐵  mod  𝑀 )  ∈  ℂ ) | 
						
							| 7 | 2 6 | mulcomd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐴  ·  ( 𝐵  mod  𝑀 ) )  =  ( ( 𝐵  mod  𝑀 )  ·  𝐴 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  ·  ( 𝐵  mod  𝑀 ) )  mod  𝑀 )  =  ( ( ( 𝐵  mod  𝑀 )  ·  𝐴 )  mod  𝑀 ) ) | 
						
							| 9 |  | modmulmod | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  ( ( ( 𝐵  mod  𝑀 )  ·  𝐴 )  mod  𝑀 )  =  ( ( 𝐵  ·  𝐴 )  mod  𝑀 ) ) | 
						
							| 10 | 9 | 3com12 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( ( 𝐵  mod  𝑀 )  ·  𝐴 )  mod  𝑀 )  =  ( ( 𝐵  ·  𝐴 )  mod  𝑀 ) ) | 
						
							| 11 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 12 | 1 11 | anim12ci | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ ) ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ ) ) | 
						
							| 14 |  | mulcom | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐵  ·  𝐴 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐵  ·  𝐴 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐵  ·  𝐴 )  mod  𝑀 )  =  ( ( 𝐴  ·  𝐵 )  mod  𝑀 ) ) | 
						
							| 17 | 8 10 16 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  ·  ( 𝐵  mod  𝑀 ) )  mod  𝑀 )  =  ( ( 𝐴  ·  𝐵 )  mod  𝑀 ) ) |