Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
3 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
4 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) |
5 |
3 4
|
modcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 mod 𝑀 ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 mod 𝑀 ) ∈ ℂ ) |
7 |
2 6
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 · ( 𝐵 mod 𝑀 ) ) = ( ( 𝐵 mod 𝑀 ) · 𝐴 ) ) |
8 |
7
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · ( 𝐵 mod 𝑀 ) ) mod 𝑀 ) = ( ( ( 𝐵 mod 𝑀 ) · 𝐴 ) mod 𝑀 ) ) |
9 |
|
modmulmod |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝑀 ) · 𝐴 ) mod 𝑀 ) = ( ( 𝐵 · 𝐴 ) mod 𝑀 ) ) |
10 |
9
|
3com12 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝑀 ) · 𝐴 ) mod 𝑀 ) = ( ( 𝐵 · 𝐴 ) mod 𝑀 ) ) |
11 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
12 |
1 11
|
anim12ci |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) |
14 |
|
mulcom |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐵 · 𝐴 ) mod 𝑀 ) = ( ( 𝐴 · 𝐵 ) mod 𝑀 ) ) |
17 |
8 10 16
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · ( 𝐵 mod 𝑀 ) ) mod 𝑀 ) = ( ( 𝐴 · 𝐵 ) mod 𝑀 ) ) |