Metamath Proof Explorer


Theorem modom

Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion modom ( ∃* 𝑥 𝜑 ↔ { 𝑥𝜑 } ≼ 1o )

Proof

Step Hyp Ref Expression
1 moeu ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
2 imor ( ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∨ ∃! 𝑥 𝜑 ) )
3 abn0 ( { 𝑥𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 )
4 3 necon1bbii ( ¬ ∃ 𝑥 𝜑 ↔ { 𝑥𝜑 } = ∅ )
5 sdom1 ( { 𝑥𝜑 } ≺ 1o ↔ { 𝑥𝜑 } = ∅ )
6 4 5 bitr4i ( ¬ ∃ 𝑥 𝜑 ↔ { 𝑥𝜑 } ≺ 1o )
7 euen1 ( ∃! 𝑥 𝜑 ↔ { 𝑥𝜑 } ≈ 1o )
8 6 7 orbi12i ( ( ¬ ∃ 𝑥 𝜑 ∨ ∃! 𝑥 𝜑 ) ↔ ( { 𝑥𝜑 } ≺ 1o ∨ { 𝑥𝜑 } ≈ 1o ) )
9 brdom2 ( { 𝑥𝜑 } ≼ 1o ↔ ( { 𝑥𝜑 } ≺ 1o ∨ { 𝑥𝜑 } ≈ 1o ) )
10 8 9 bitr4i ( ( ¬ ∃ 𝑥 𝜑 ∨ ∃! 𝑥 𝜑 ) ↔ { 𝑥𝜑 } ≼ 1o )
11 1 2 10 3bitri ( ∃* 𝑥 𝜑 ↔ { 𝑥𝜑 } ≼ 1o )