Metamath Proof Explorer


Theorem modom2

Description: Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion modom2 ( ∃* 𝑥 𝑥𝐴𝐴 ≼ 1o )

Proof

Step Hyp Ref Expression
1 modom ( ∃* 𝑥 𝑥𝐴 ↔ { 𝑥𝑥𝐴 } ≼ 1o )
2 abid2 { 𝑥𝑥𝐴 } = 𝐴
3 2 breq1i ( { 𝑥𝑥𝐴 } ≼ 1o𝐴 ≼ 1o )
4 1 3 bitri ( ∃* 𝑥 𝑥𝐴𝐴 ≼ 1o )