| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reumodprminv | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ∃! 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  | 
						
						
							| 2 | 
							
								
							 | 
							reurex | 
							⊢ ( ∃! 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1  →  ∃ 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  | 
						
						
							| 3 | 
							
								
							 | 
							prmz | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ )  | 
						
						
							| 4 | 
							
								3
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑃  ∈  ℤ )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑃  ∈  ℤ )  | 
						
						
							| 6 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  →  𝑟  ∈  ℤ )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  →  𝑟  ∈  ℤ )  | 
						
						
							| 8 | 
							
								
							 | 
							elfzoelz | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  𝐼  ∈  ℤ )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝐼  ∈  ℤ )  | 
						
						
							| 10 | 
							
								
							 | 
							zmulcl | 
							⊢ ( ( 𝑟  ∈  ℤ  ∧  𝐼  ∈  ℤ )  →  ( 𝑟  ·  𝐼 )  ∈  ℤ )  | 
						
						
							| 11 | 
							
								7 9 10
							 | 
							syl2an | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝑟  ·  𝐼 )  ∈  ℤ )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							zsubcld | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ∈  ℤ )  | 
						
						
							| 13 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑃  ∈  ℕ )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑃  ∈  ℕ )  | 
						
						
							| 16 | 
							
								
							 | 
							zmodfzo | 
							⊢ ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ∈  ( 0 ..^ 𝑃 ) )  | 
						
						
							| 17 | 
							
								12 15 16
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ∈  ( 0 ..^ 𝑃 ) )  | 
						
						
							| 18 | 
							
								8
							 | 
							zred | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  𝐼  ∈  ℝ )  | 
						
						
							| 19 | 
							
								18
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝐼  ∈  ℝ )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝐼  ∈  ℝ )  | 
						
						
							| 21 | 
							
								13
							 | 
							nnred | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ )  | 
						
						
							| 22 | 
							
								21
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑃  ∈  ℝ )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑃  ∈  ℝ )  | 
						
						
							| 24 | 
							
								6
							 | 
							zred | 
							⊢ ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  →  𝑟  ∈  ℝ )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  →  𝑟  ∈  ℝ )  | 
						
						
							| 26 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( 𝑟  ∈  ℝ  ∧  𝐼  ∈  ℝ )  →  ( 𝑟  ·  𝐼 )  ∈  ℝ )  | 
						
						
							| 27 | 
							
								25 19 26
							 | 
							syl2an | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝑟  ·  𝐼 )  ∈  ℝ )  | 
						
						
							| 28 | 
							
								23 27
							 | 
							resubcld | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ∈  ℝ )  | 
						
						
							| 29 | 
							
								
							 | 
							elfzoelz | 
							⊢ ( 𝑁  ∈  ( 1 ..^ 𝑃 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 30 | 
							
								29
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑁  ∈  ℤ )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑁  ∈  ℤ )  | 
						
						
							| 32 | 
							
								13
							 | 
							nnrpd | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ+ )  | 
						
						
							| 33 | 
							
								32
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑃  ∈  ℝ+ )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑃  ∈  ℝ+ )  | 
						
						
							| 35 | 
							
								
							 | 
							modaddmulmod | 
							⊢ ( ( ( 𝐼  ∈  ℝ  ∧  ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ∈  ℝ  ∧  𝑁  ∈  ℤ )  ∧  𝑃  ∈  ℝ+ )  →  ( ( 𝐼  +  ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ·  𝑁 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ·  𝑁 ) )  mod  𝑃 ) )  | 
						
						
							| 36 | 
							
								20 28 31 34 35
							 | 
							syl31anc | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ·  𝑁 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ·  𝑁 ) )  mod  𝑃 ) )  | 
						
						
							| 37 | 
							
								13
							 | 
							nncnd | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ )  | 
						
						
							| 38 | 
							
								37
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑃  ∈  ℂ )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑃  ∈  ℂ )  | 
						
						
							| 40 | 
							
								6
							 | 
							zcnd | 
							⊢ ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  →  𝑟  ∈  ℂ )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  →  𝑟  ∈  ℂ )  | 
						
						
							| 42 | 
							
								8
							 | 
							zcnd | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  𝐼  ∈  ℂ )  | 
						
						
							| 43 | 
							
								42
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝐼  ∈  ℂ )  | 
						
						
							| 44 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( 𝑟  ∈  ℂ  ∧  𝐼  ∈  ℂ )  →  ( 𝑟  ·  𝐼 )  ∈  ℂ )  | 
						
						
							| 45 | 
							
								41 43 44
							 | 
							syl2an | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝑟  ·  𝐼 )  ∈  ℂ )  | 
						
						
							| 46 | 
							
								29
							 | 
							zcnd | 
							⊢ ( 𝑁  ∈  ( 1 ..^ 𝑃 )  →  𝑁  ∈  ℂ )  | 
						
						
							| 47 | 
							
								46
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑁  ∈  ℂ )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑁  ∈  ℂ )  | 
						
						
							| 49 | 
							
								39 45 48
							 | 
							subdird | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ·  𝑁 )  =  ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝐼  +  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ·  𝑁 ) )  =  ( 𝐼  +  ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  ·  𝑁 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) ) )  mod  𝑃 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							mulcom | 
							⊢ ( ( 𝑃  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 𝑃  ·  𝑁 )  =  ( 𝑁  ·  𝑃 ) )  | 
						
						
							| 53 | 
							
								37 46 52
							 | 
							syl2an | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( 𝑃  ·  𝑁 )  =  ( 𝑁  ·  𝑃 ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							oveq1d | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑃  ·  𝑁 )  mod  𝑃 )  =  ( ( 𝑁  ·  𝑃 )  mod  𝑃 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							mulmod0 | 
							⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑃  ∈  ℝ+ )  →  ( ( 𝑁  ·  𝑃 )  mod  𝑃 )  =  0 )  | 
						
						
							| 56 | 
							
								29 32 55
							 | 
							syl2anr | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑁  ·  𝑃 )  mod  𝑃 )  =  0 )  | 
						
						
							| 57 | 
							
								54 56
							 | 
							eqtrd | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑃  ·  𝑁 )  mod  𝑃 )  =  0 )  | 
						
						
							| 58 | 
							
								57
							 | 
							3adant3 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑃  ·  𝑁 )  mod  𝑃 )  =  0 )  | 
						
						
							| 59 | 
							
								58
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝑃  ·  𝑁 )  mod  𝑃 )  =  0 )  | 
						
						
							| 60 | 
							
								41
							 | 
							adantr | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑟  ∈  ℂ )  | 
						
						
							| 61 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝐼  ∈  ℂ )  | 
						
						
							| 62 | 
							
								60 61 48
							 | 
							mul32d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  =  ( ( 𝑟  ·  𝑁 )  ·  𝐼 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  mod  𝑃 )  =  ( ( ( 𝑟  ·  𝑁 )  ·  𝐼 )  mod  𝑃 ) )  | 
						
						
							| 64 | 
							
								29
							 | 
							zred | 
							⊢ ( 𝑁  ∈  ( 1 ..^ 𝑃 )  →  𝑁  ∈  ℝ )  | 
						
						
							| 65 | 
							
								64
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑁  ∈  ℝ )  | 
						
						
							| 66 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( 𝑟  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑟  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 67 | 
							
								25 65 66
							 | 
							syl2an | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝑟  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 68 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝐼  ∈  ℤ )  | 
						
						
							| 69 | 
							
								
							 | 
							modmulmod | 
							⊢ ( ( ( 𝑟  ·  𝑁 )  ∈  ℝ  ∧  𝐼  ∈  ℤ  ∧  𝑃  ∈  ℝ+ )  →  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 )  =  ( ( ( 𝑟  ·  𝑁 )  ·  𝐼 )  mod  𝑃 ) )  | 
						
						
							| 70 | 
							
								67 68 34 69
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 )  =  ( ( ( 𝑟  ·  𝑁 )  ·  𝐼 )  mod  𝑃 ) )  | 
						
						
							| 71 | 
							
								63 70
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  mod  𝑃 )  =  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 ) )  | 
						
						
							| 72 | 
							
								59 71
							 | 
							oveq12d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( 𝑃  ·  𝑁 )  mod  𝑃 )  −  ( ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  mod  𝑃 ) )  =  ( 0  −  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( ( 𝑃  ·  𝑁 )  mod  𝑃 )  −  ( ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 0  −  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 ) )  mod  𝑃 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( 𝑃  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑃  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 75 | 
							
								21 64 74
							 | 
							syl2an | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( 𝑃  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 76 | 
							
								75
							 | 
							3adant3 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( 𝑃  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 77 | 
							
								76
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝑃  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 78 | 
							
								65
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑁  ∈  ℝ )  | 
						
						
							| 79 | 
							
								27 78
							 | 
							remulcld | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 80 | 
							
								
							 | 
							modsubmodmod | 
							⊢ ( ( ( 𝑃  ·  𝑁 )  ∈  ℝ  ∧  ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  →  ( ( ( ( 𝑃  ·  𝑁 )  mod  𝑃 )  −  ( ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  mod  𝑃 ) )  | 
						
						
							| 81 | 
							
								77 79 34 80
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( ( 𝑃  ·  𝑁 )  mod  𝑃 )  −  ( ( ( 𝑟  ·  𝐼 )  ·  𝑁 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  mod  𝑃 ) )  | 
						
						
							| 82 | 
							
								
							 | 
							mulcom | 
							⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑟  ∈  ℂ )  →  ( 𝑁  ·  𝑟 )  =  ( 𝑟  ·  𝑁 ) )  | 
						
						
							| 83 | 
							
								47 40 82
							 | 
							syl2anr | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝑁  ·  𝑟 )  =  ( 𝑟  ·  𝑁 ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							oveq1d | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  ( ( 𝑟  ·  𝑁 )  mod  𝑃 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							eqeq1d | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1  ↔  ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  =  1 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							biimpd | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1  →  ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  =  1 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							impancom | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  =  1 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							imp | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  =  1 )  | 
						
						
							| 89 | 
							
								88
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  =  ( 1  ·  𝐼 ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 )  =  ( ( 1  ·  𝐼 )  mod  𝑃 ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 0  −  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 ) )  =  ( 0  −  ( ( 1  ·  𝐼 )  mod  𝑃 ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 0  −  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 0  −  ( ( 1  ·  𝐼 )  mod  𝑃 ) )  mod  𝑃 ) )  | 
						
						
							| 93 | 
							
								61
							 | 
							mullidd | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 1  ·  𝐼 )  =  𝐼 )  | 
						
						
							| 94 | 
							
								93
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 1  ·  𝐼 )  mod  𝑃 )  =  ( 𝐼  mod  𝑃 ) )  | 
						
						
							| 95 | 
							
								32 18
							 | 
							anim12ci | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( 𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ ) )  | 
						
						
							| 96 | 
							
								
							 | 
							elfzo2 | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  ↔  ( 𝐼  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑃  ∈  ℤ  ∧  𝐼  <  𝑃 ) )  | 
						
						
							| 97 | 
							
								
							 | 
							eluz2 | 
							⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 1 )  ↔  ( 1  ∈  ℤ  ∧  𝐼  ∈  ℤ  ∧  1  ≤  𝐼 ) )  | 
						
						
							| 98 | 
							
								
							 | 
							0red | 
							⊢ ( 𝐼  ∈  ℤ  →  0  ∈  ℝ )  | 
						
						
							| 99 | 
							
								
							 | 
							1red | 
							⊢ ( 𝐼  ∈  ℤ  →  1  ∈  ℝ )  | 
						
						
							| 100 | 
							
								
							 | 
							zre | 
							⊢ ( 𝐼  ∈  ℤ  →  𝐼  ∈  ℝ )  | 
						
						
							| 101 | 
							
								98 99 100
							 | 
							3jca | 
							⊢ ( 𝐼  ∈  ℤ  →  ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐼  ∈  ℝ ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							adantr | 
							⊢ ( ( 𝐼  ∈  ℤ  ∧  1  ≤  𝐼 )  →  ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐼  ∈  ℝ ) )  | 
						
						
							| 103 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 104 | 
							
								103
							 | 
							a1i | 
							⊢ ( 𝐼  ∈  ℤ  →  0  ≤  1 )  | 
						
						
							| 105 | 
							
								104
							 | 
							anim1i | 
							⊢ ( ( 𝐼  ∈  ℤ  ∧  1  ≤  𝐼 )  →  ( 0  ≤  1  ∧  1  ≤  𝐼 ) )  | 
						
						
							| 106 | 
							
								
							 | 
							letr | 
							⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐼  ∈  ℝ )  →  ( ( 0  ≤  1  ∧  1  ≤  𝐼 )  →  0  ≤  𝐼 ) )  | 
						
						
							| 107 | 
							
								102 105 106
							 | 
							sylc | 
							⊢ ( ( 𝐼  ∈  ℤ  ∧  1  ≤  𝐼 )  →  0  ≤  𝐼 )  | 
						
						
							| 108 | 
							
								107
							 | 
							3adant1 | 
							⊢ ( ( 1  ∈  ℤ  ∧  𝐼  ∈  ℤ  ∧  1  ≤  𝐼 )  →  0  ≤  𝐼 )  | 
						
						
							| 109 | 
							
								97 108
							 | 
							sylbi | 
							⊢ ( 𝐼  ∈  ( ℤ≥ ‘ 1 )  →  0  ≤  𝐼 )  | 
						
						
							| 110 | 
							
								109
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐼  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑃  ∈  ℤ  ∧  𝐼  <  𝑃 )  →  0  ≤  𝐼 )  | 
						
						
							| 111 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐼  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑃  ∈  ℤ  ∧  𝐼  <  𝑃 )  →  𝐼  <  𝑃 )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							jca | 
							⊢ ( ( 𝐼  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑃  ∈  ℤ  ∧  𝐼  <  𝑃 )  →  ( 0  ≤  𝐼  ∧  𝐼  <  𝑃 ) )  | 
						
						
							| 113 | 
							
								96 112
							 | 
							sylbi | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  ( 0  ≤  𝐼  ∧  𝐼  <  𝑃 ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							adantl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( 0  ≤  𝐼  ∧  𝐼  <  𝑃 ) )  | 
						
						
							| 115 | 
							
								95 114
							 | 
							jca | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  ∧  ( 0  ≤  𝐼  ∧  𝐼  <  𝑃 ) ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							3adant2 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  ∧  ( 0  ≤  𝐼  ∧  𝐼  <  𝑃 ) ) )  | 
						
						
							| 117 | 
							
								116
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  ∧  ( 0  ≤  𝐼  ∧  𝐼  <  𝑃 ) ) )  | 
						
						
							| 118 | 
							
								
							 | 
							modid | 
							⊢ ( ( ( 𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  ∧  ( 0  ≤  𝐼  ∧  𝐼  <  𝑃 ) )  →  ( 𝐼  mod  𝑃 )  =  𝐼 )  | 
						
						
							| 119 | 
							
								117 118
							 | 
							syl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝐼  mod  𝑃 )  =  𝐼 )  | 
						
						
							| 120 | 
							
								94 119
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 1  ·  𝐼 )  mod  𝑃 )  =  𝐼 )  | 
						
						
							| 121 | 
							
								120
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 0  −  ( ( 1  ·  𝐼 )  mod  𝑃 ) )  =  ( 0  −  𝐼 ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 0  −  ( ( 1  ·  𝐼 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 0  −  𝐼 )  mod  𝑃 ) )  | 
						
						
							| 123 | 
							
								92 122
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 0  −  ( ( ( ( 𝑟  ·  𝑁 )  mod  𝑃 )  ·  𝐼 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 0  −  𝐼 )  mod  𝑃 ) )  | 
						
						
							| 124 | 
							
								73 81 123
							 | 
							3eqtr3d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  mod  𝑃 )  =  ( ( 0  −  𝐼 )  mod  𝑃 ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝐼  +  ( ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  mod  𝑃 ) )  =  ( 𝐼  +  ( ( 0  −  𝐼 )  mod  𝑃 ) ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( ( 0  −  𝐼 )  mod  𝑃 ) )  mod  𝑃 ) )  | 
						
						
							| 127 | 
							
								77 79
							 | 
							resubcld | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  ∈  ℝ )  | 
						
						
							| 128 | 
							
								
							 | 
							modadd2mod | 
							⊢ ( ( ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  ∈  ℝ  ∧  𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  →  ( ( 𝐼  +  ( ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) ) )  mod  𝑃 ) )  | 
						
						
							| 129 | 
							
								127 20 34 128
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) ) )  mod  𝑃 ) )  | 
						
						
							| 130 | 
							
								
							 | 
							0red | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  0  ∈  ℝ )  | 
						
						
							| 131 | 
							
								130 18
							 | 
							resubcld | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  ( 0  −  𝐼 )  ∈  ℝ )  | 
						
						
							| 132 | 
							
								131
							 | 
							adantl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( 0  −  𝐼 )  ∈  ℝ )  | 
						
						
							| 133 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝐼  ∈  ℝ )  | 
						
						
							| 134 | 
							
								32
							 | 
							adantr | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  𝑃  ∈  ℝ+ )  | 
						
						
							| 135 | 
							
								132 133 134
							 | 
							3jca | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 0  −  𝐼 )  ∈  ℝ  ∧  𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							3adant2 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 0  −  𝐼 )  ∈  ℝ  ∧  𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ ) )  | 
						
						
							| 137 | 
							
								136
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 0  −  𝐼 )  ∈  ℝ  ∧  𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ ) )  | 
						
						
							| 138 | 
							
								
							 | 
							modadd2mod | 
							⊢ ( ( ( 0  −  𝐼 )  ∈  ℝ  ∧  𝐼  ∈  ℝ  ∧  𝑃  ∈  ℝ+ )  →  ( ( 𝐼  +  ( ( 0  −  𝐼 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( 0  −  𝐼 ) )  mod  𝑃 ) )  | 
						
						
							| 139 | 
							
								137 138
							 | 
							syl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( ( 0  −  𝐼 )  mod  𝑃 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( 0  −  𝐼 ) )  mod  𝑃 ) )  | 
						
						
							| 140 | 
							
								
							 | 
							0cnd | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  0  ∈  ℂ )  | 
						
						
							| 141 | 
							
								42 140
							 | 
							pncan3d | 
							⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  ( 𝐼  +  ( 0  −  𝐼 ) )  =  0 )  | 
						
						
							| 142 | 
							
								141
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( 𝐼  +  ( 0  −  𝐼 ) )  =  0 )  | 
						
						
							| 143 | 
							
								142
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 𝐼  +  ( 0  −  𝐼 ) )  =  0 )  | 
						
						
							| 144 | 
							
								143
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( 0  −  𝐼 ) )  mod  𝑃 )  =  ( 0  mod  𝑃 ) )  | 
						
						
							| 145 | 
							
								
							 | 
							0mod | 
							⊢ ( 𝑃  ∈  ℝ+  →  ( 0  mod  𝑃 )  =  0 )  | 
						
						
							| 146 | 
							
								32 145
							 | 
							syl | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 0  mod  𝑃 )  =  0 )  | 
						
						
							| 147 | 
							
								146
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( 0  mod  𝑃 )  =  0 )  | 
						
						
							| 148 | 
							
								147
							 | 
							adantl | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( 0  mod  𝑃 )  =  0 )  | 
						
						
							| 149 | 
							
								139 144 148
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( ( 0  −  𝐼 )  mod  𝑃 ) )  mod  𝑃 )  =  0 )  | 
						
						
							| 150 | 
							
								126 129 149
							 | 
							3eqtr3d | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( ( 𝑃  ·  𝑁 )  −  ( ( 𝑟  ·  𝐼 )  ·  𝑁 ) ) )  mod  𝑃 )  =  0 )  | 
						
						
							| 151 | 
							
								36 51 150
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( 𝐼  +  ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ·  𝑁 ) )  mod  𝑃 )  =  0 )  | 
						
						
							| 152 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑗  =  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  →  ( 𝑗  ·  𝑁 )  =  ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ·  𝑁 ) )  | 
						
						
							| 153 | 
							
								152
							 | 
							oveq2d | 
							⊢ ( 𝑗  =  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  →  ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  =  ( 𝐼  +  ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ·  𝑁 ) ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							oveq1d | 
							⊢ ( 𝑗  =  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  →  ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  ( ( 𝐼  +  ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ·  𝑁 ) )  mod  𝑃 ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							eqeq1d | 
							⊢ ( 𝑗  =  ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  →  ( ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0  ↔  ( ( 𝐼  +  ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ·  𝑁 ) )  mod  𝑃 )  =  0 ) )  | 
						
						
							| 156 | 
							
								155
							 | 
							rspcev | 
							⊢ ( ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ∈  ( 0 ..^ 𝑃 )  ∧  ( ( 𝐼  +  ( ( ( 𝑃  −  ( 𝑟  ·  𝐼 ) )  mod  𝑃 )  ·  𝑁 ) )  mod  𝑃 )  =  0 )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 )  | 
						
						
							| 157 | 
							
								17 151 156
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 )  | 
						
						
							| 158 | 
							
								157
							 | 
							ex | 
							⊢ ( ( 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) )  ∧  ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1 )  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							rexlimiva | 
							⊢ ( ∃ 𝑟  ∈  ( 1 ... ( 𝑃  −  1 ) ) ( ( 𝑁  ·  𝑟 )  mod  𝑃 )  =  1  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) )  | 
						
						
							| 160 | 
							
								1 2 159
							 | 
							3syl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) )  | 
						
						
							| 161 | 
							
								160
							 | 
							3adant3 | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							pm2.43i | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 )  |