Step |
Hyp |
Ref |
Expression |
1 |
|
modsubi.1 |
⊢ 𝑁 ∈ ℕ |
2 |
|
modsubi.2 |
⊢ 𝐴 ∈ ℕ |
3 |
|
modsubi.3 |
⊢ 𝐵 ∈ ℕ0 |
4 |
|
modsubi.4 |
⊢ 𝑀 ∈ ℕ0 |
5 |
|
modsubi.6 |
⊢ ( 𝐴 mod 𝑁 ) = ( 𝐾 mod 𝑁 ) |
6 |
|
modsubi.5 |
⊢ ( 𝑀 + 𝐵 ) = 𝐾 |
7 |
2
|
nnrei |
⊢ 𝐴 ∈ ℝ |
8 |
4 3
|
nn0addcli |
⊢ ( 𝑀 + 𝐵 ) ∈ ℕ0 |
9 |
8
|
nn0rei |
⊢ ( 𝑀 + 𝐵 ) ∈ ℝ |
10 |
6 9
|
eqeltrri |
⊢ 𝐾 ∈ ℝ |
11 |
7 10
|
pm3.2i |
⊢ ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ) |
12 |
3
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
13 |
12
|
renegcli |
⊢ - 𝐵 ∈ ℝ |
14 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
15 |
1 14
|
ax-mp |
⊢ 𝑁 ∈ ℝ+ |
16 |
13 15
|
pm3.2i |
⊢ ( - 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) |
17 |
|
modadd1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ) ∧ ( - 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑁 ) = ( 𝐾 mod 𝑁 ) ) → ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = ( ( 𝐾 + - 𝐵 ) mod 𝑁 ) ) |
18 |
11 16 5 17
|
mp3an |
⊢ ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = ( ( 𝐾 + - 𝐵 ) mod 𝑁 ) |
19 |
2
|
nncni |
⊢ 𝐴 ∈ ℂ |
20 |
3
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
21 |
19 20
|
negsubi |
⊢ ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) |
22 |
21
|
oveq1i |
⊢ ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = ( ( 𝐴 − 𝐵 ) mod 𝑁 ) |
23 |
10
|
recni |
⊢ 𝐾 ∈ ℂ |
24 |
23 20
|
negsubi |
⊢ ( 𝐾 + - 𝐵 ) = ( 𝐾 − 𝐵 ) |
25 |
4
|
nn0cni |
⊢ 𝑀 ∈ ℂ |
26 |
23 20 25
|
subadd2i |
⊢ ( ( 𝐾 − 𝐵 ) = 𝑀 ↔ ( 𝑀 + 𝐵 ) = 𝐾 ) |
27 |
6 26
|
mpbir |
⊢ ( 𝐾 − 𝐵 ) = 𝑀 |
28 |
24 27
|
eqtri |
⊢ ( 𝐾 + - 𝐵 ) = 𝑀 |
29 |
28
|
oveq1i |
⊢ ( ( 𝐾 + - 𝐵 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
30 |
18 22 29
|
3eqtr3i |
⊢ ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |