Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) = ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) = ( 𝑦 · ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) ) ) |
3 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) = ( 𝑦 · ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) ) ) → ( 𝑥 − ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) ) = ( 𝐴 − ( 𝑦 · ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) ) ) ) |
4 |
2 3
|
mpdan |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 − ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) ) = ( 𝐴 − ( 𝑦 · ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 / 𝑦 ) = ( 𝐴 / 𝐵 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |
7 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝐵 ∧ ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) → ( 𝑦 · ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) ) = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) |
8 |
6 7
|
mpdan |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 · ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) ) = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 − ( 𝑦 · ( ⌊ ‘ ( 𝐴 / 𝑦 ) ) ) ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
10 |
|
df-mod |
⊢ mod = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ+ ↦ ( 𝑥 − ( 𝑦 · ( ⌊ ‘ ( 𝑥 / 𝑦 ) ) ) ) ) |
11 |
|
ovex |
⊢ ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ∈ V |
12 |
4 9 10 11
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |