| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modxai.1 | ⊢ 𝑁  ∈  ℕ | 
						
							| 2 |  | modxai.2 | ⊢ 𝐴  ∈  ℕ | 
						
							| 3 |  | modxai.3 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 4 |  | modxai.4 | ⊢ 𝐷  ∈  ℤ | 
						
							| 5 |  | modxai.5 | ⊢ 𝐾  ∈  ℕ0 | 
						
							| 6 |  | modxai.6 | ⊢ 𝑀  ∈  ℕ0 | 
						
							| 7 |  | modxai.7 | ⊢ 𝐶  ∈  ℕ0 | 
						
							| 8 |  | modxai.8 | ⊢ 𝐿  ∈  ℕ0 | 
						
							| 9 |  | modxai.11 | ⊢ ( ( 𝐴 ↑ 𝐵 )  mod  𝑁 )  =  ( 𝐾  mod  𝑁 ) | 
						
							| 10 |  | modxai.12 | ⊢ ( ( 𝐴 ↑ 𝐶 )  mod  𝑁 )  =  ( 𝐿  mod  𝑁 ) | 
						
							| 11 |  | modxai.9 | ⊢ ( 𝐵  +  𝐶 )  =  𝐸 | 
						
							| 12 |  | modxai.10 | ⊢ ( ( 𝐷  ·  𝑁 )  +  𝑀 )  =  ( 𝐾  ·  𝐿 ) | 
						
							| 13 | 11 | oveq2i | ⊢ ( 𝐴 ↑ ( 𝐵  +  𝐶 ) )  =  ( 𝐴 ↑ 𝐸 ) | 
						
							| 14 | 2 | nncni | ⊢ 𝐴  ∈  ℂ | 
						
							| 15 |  | expadd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴 ↑ 𝐵 )  ·  ( 𝐴 ↑ 𝐶 ) ) ) | 
						
							| 16 | 14 3 7 15 | mp3an | ⊢ ( 𝐴 ↑ ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴 ↑ 𝐵 )  ·  ( 𝐴 ↑ 𝐶 ) ) | 
						
							| 17 | 13 16 | eqtr3i | ⊢ ( 𝐴 ↑ 𝐸 )  =  ( ( 𝐴 ↑ 𝐵 )  ·  ( 𝐴 ↑ 𝐶 ) ) | 
						
							| 18 | 17 | oveq1i | ⊢ ( ( 𝐴 ↑ 𝐸 )  mod  𝑁 )  =  ( ( ( 𝐴 ↑ 𝐵 )  ·  ( 𝐴 ↑ 𝐶 ) )  mod  𝑁 ) | 
						
							| 19 |  | nnexpcl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝐵 )  ∈  ℕ ) | 
						
							| 20 | 2 3 19 | mp2an | ⊢ ( 𝐴 ↑ 𝐵 )  ∈  ℕ | 
						
							| 21 | 20 | nnzi | ⊢ ( 𝐴 ↑ 𝐵 )  ∈  ℤ | 
						
							| 22 | 21 | a1i | ⊢ ( ⊤  →  ( 𝐴 ↑ 𝐵 )  ∈  ℤ ) | 
						
							| 23 | 5 | nn0zi | ⊢ 𝐾  ∈  ℤ | 
						
							| 24 | 23 | a1i | ⊢ ( ⊤  →  𝐾  ∈  ℤ ) | 
						
							| 25 |  | nnexpcl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝐶 )  ∈  ℕ ) | 
						
							| 26 | 2 7 25 | mp2an | ⊢ ( 𝐴 ↑ 𝐶 )  ∈  ℕ | 
						
							| 27 | 26 | nnzi | ⊢ ( 𝐴 ↑ 𝐶 )  ∈  ℤ | 
						
							| 28 | 27 | a1i | ⊢ ( ⊤  →  ( 𝐴 ↑ 𝐶 )  ∈  ℤ ) | 
						
							| 29 | 8 | nn0zi | ⊢ 𝐿  ∈  ℤ | 
						
							| 30 | 29 | a1i | ⊢ ( ⊤  →  𝐿  ∈  ℤ ) | 
						
							| 31 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 32 | 1 31 | ax-mp | ⊢ 𝑁  ∈  ℝ+ | 
						
							| 33 | 32 | a1i | ⊢ ( ⊤  →  𝑁  ∈  ℝ+ ) | 
						
							| 34 | 9 | a1i | ⊢ ( ⊤  →  ( ( 𝐴 ↑ 𝐵 )  mod  𝑁 )  =  ( 𝐾  mod  𝑁 ) ) | 
						
							| 35 | 10 | a1i | ⊢ ( ⊤  →  ( ( 𝐴 ↑ 𝐶 )  mod  𝑁 )  =  ( 𝐿  mod  𝑁 ) ) | 
						
							| 36 | 22 24 28 30 33 34 35 | modmul12d | ⊢ ( ⊤  →  ( ( ( 𝐴 ↑ 𝐵 )  ·  ( 𝐴 ↑ 𝐶 ) )  mod  𝑁 )  =  ( ( 𝐾  ·  𝐿 )  mod  𝑁 ) ) | 
						
							| 37 | 36 | mptru | ⊢ ( ( ( 𝐴 ↑ 𝐵 )  ·  ( 𝐴 ↑ 𝐶 ) )  mod  𝑁 )  =  ( ( 𝐾  ·  𝐿 )  mod  𝑁 ) | 
						
							| 38 |  | zcn | ⊢ ( 𝐷  ∈  ℤ  →  𝐷  ∈  ℂ ) | 
						
							| 39 | 4 38 | ax-mp | ⊢ 𝐷  ∈  ℂ | 
						
							| 40 | 1 | nncni | ⊢ 𝑁  ∈  ℂ | 
						
							| 41 | 39 40 | mulcli | ⊢ ( 𝐷  ·  𝑁 )  ∈  ℂ | 
						
							| 42 | 6 | nn0cni | ⊢ 𝑀  ∈  ℂ | 
						
							| 43 | 41 42 | addcomi | ⊢ ( ( 𝐷  ·  𝑁 )  +  𝑀 )  =  ( 𝑀  +  ( 𝐷  ·  𝑁 ) ) | 
						
							| 44 | 12 43 | eqtr3i | ⊢ ( 𝐾  ·  𝐿 )  =  ( 𝑀  +  ( 𝐷  ·  𝑁 ) ) | 
						
							| 45 | 44 | oveq1i | ⊢ ( ( 𝐾  ·  𝐿 )  mod  𝑁 )  =  ( ( 𝑀  +  ( 𝐷  ·  𝑁 ) )  mod  𝑁 ) | 
						
							| 46 | 37 45 | eqtri | ⊢ ( ( ( 𝐴 ↑ 𝐵 )  ·  ( 𝐴 ↑ 𝐶 ) )  mod  𝑁 )  =  ( ( 𝑀  +  ( 𝐷  ·  𝑁 ) )  mod  𝑁 ) | 
						
							| 47 | 6 | nn0rei | ⊢ 𝑀  ∈  ℝ | 
						
							| 48 |  | modcyc | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ+  ∧  𝐷  ∈  ℤ )  →  ( ( 𝑀  +  ( 𝐷  ·  𝑁 ) )  mod  𝑁 )  =  ( 𝑀  mod  𝑁 ) ) | 
						
							| 49 | 47 32 4 48 | mp3an | ⊢ ( ( 𝑀  +  ( 𝐷  ·  𝑁 ) )  mod  𝑁 )  =  ( 𝑀  mod  𝑁 ) | 
						
							| 50 | 46 49 | eqtri | ⊢ ( ( ( 𝐴 ↑ 𝐵 )  ·  ( 𝐴 ↑ 𝐶 ) )  mod  𝑁 )  =  ( 𝑀  mod  𝑁 ) | 
						
							| 51 | 18 50 | eqtri | ⊢ ( ( 𝐴 ↑ 𝐸 )  mod  𝑁 )  =  ( 𝑀  mod  𝑁 ) |