Metamath Proof Explorer


Theorem modxp1i

Description: Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014)

Ref Expression
Hypotheses modxai.1 𝑁 ∈ ℕ
modxai.2 𝐴 ∈ ℕ
modxai.3 𝐵 ∈ ℕ0
modxai.4 𝐷 ∈ ℤ
modxai.5 𝐾 ∈ ℕ0
modxai.6 𝑀 ∈ ℕ0
modxp1i.9 ( ( 𝐴𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 )
modxp1i.7 ( 𝐵 + 1 ) = 𝐸
modxp1i.8 ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝐾 · 𝐴 )
Assertion modxp1i ( ( 𝐴𝐸 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 )

Proof

Step Hyp Ref Expression
1 modxai.1 𝑁 ∈ ℕ
2 modxai.2 𝐴 ∈ ℕ
3 modxai.3 𝐵 ∈ ℕ0
4 modxai.4 𝐷 ∈ ℤ
5 modxai.5 𝐾 ∈ ℕ0
6 modxai.6 𝑀 ∈ ℕ0
7 modxp1i.9 ( ( 𝐴𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 )
8 modxp1i.7 ( 𝐵 + 1 ) = 𝐸
9 modxp1i.8 ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝐾 · 𝐴 )
10 1nn0 1 ∈ ℕ0
11 2 nnnn0i 𝐴 ∈ ℕ0
12 2 nncni 𝐴 ∈ ℂ
13 exp1 ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 )
14 12 13 ax-mp ( 𝐴 ↑ 1 ) = 𝐴
15 14 oveq1i ( ( 𝐴 ↑ 1 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 )
16 1 2 3 4 5 6 10 11 7 15 8 9 modxai ( ( 𝐴𝐸 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 )