| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modxai.1 | ⊢ 𝑁  ∈  ℕ | 
						
							| 2 |  | modxai.2 | ⊢ 𝐴  ∈  ℕ | 
						
							| 3 |  | modxai.3 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 4 |  | modxai.4 | ⊢ 𝐷  ∈  ℤ | 
						
							| 5 |  | modxai.5 | ⊢ 𝐾  ∈  ℕ0 | 
						
							| 6 |  | modxai.6 | ⊢ 𝑀  ∈  ℕ0 | 
						
							| 7 |  | modxp1i.9 | ⊢ ( ( 𝐴 ↑ 𝐵 )  mod  𝑁 )  =  ( 𝐾  mod  𝑁 ) | 
						
							| 8 |  | modxp1i.7 | ⊢ ( 𝐵  +  1 )  =  𝐸 | 
						
							| 9 |  | modxp1i.8 | ⊢ ( ( 𝐷  ·  𝑁 )  +  𝑀 )  =  ( 𝐾  ·  𝐴 ) | 
						
							| 10 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 11 | 2 | nnnn0i | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 12 | 2 | nncni | ⊢ 𝐴  ∈  ℂ | 
						
							| 13 |  | exp1 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 1 )  =  𝐴 ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( 𝐴 ↑ 1 )  =  𝐴 | 
						
							| 15 | 14 | oveq1i | ⊢ ( ( 𝐴 ↑ 1 )  mod  𝑁 )  =  ( 𝐴  mod  𝑁 ) | 
						
							| 16 | 1 2 3 4 5 6 10 11 7 15 8 9 | modxai | ⊢ ( ( 𝐴 ↑ 𝐸 )  mod  𝑁 )  =  ( 𝑀  mod  𝑁 ) |