Step |
Hyp |
Ref |
Expression |
1 |
|
modxai.1 |
⊢ 𝑁 ∈ ℕ |
2 |
|
modxai.2 |
⊢ 𝐴 ∈ ℕ |
3 |
|
modxai.3 |
⊢ 𝐵 ∈ ℕ0 |
4 |
|
modxai.4 |
⊢ 𝐷 ∈ ℤ |
5 |
|
modxai.5 |
⊢ 𝐾 ∈ ℕ0 |
6 |
|
modxai.6 |
⊢ 𝑀 ∈ ℕ0 |
7 |
|
modxp1i.9 |
⊢ ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 ) |
8 |
|
modxp1i.7 |
⊢ ( 𝐵 + 1 ) = 𝐸 |
9 |
|
modxp1i.8 |
⊢ ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝐾 · 𝐴 ) |
10 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
11 |
2
|
nnnn0i |
⊢ 𝐴 ∈ ℕ0 |
12 |
2
|
nncni |
⊢ 𝐴 ∈ ℂ |
13 |
|
exp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
14 |
12 13
|
ax-mp |
⊢ ( 𝐴 ↑ 1 ) = 𝐴 |
15 |
14
|
oveq1i |
⊢ ( ( 𝐴 ↑ 1 ) mod 𝑁 ) = ( 𝐴 mod 𝑁 ) |
16 |
1 2 3 4 5 6 10 11 7 15 8 9
|
modxai |
⊢ ( ( 𝐴 ↑ 𝐸 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |