Metamath Proof Explorer


Theorem moel

Description: "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018) Avoid ax-11 . (Revised by Wolf Lammen, 23-Nov-2024)

Ref Expression
Assertion moel ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
2 1 mo4 ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
3 r2al ( ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
4 2 3 bitr4i ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 )