Metamath Proof Explorer


Theorem moel

Description: "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018)

Ref Expression
Assertion moel ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 ralcom4 ( ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑥 = 𝑦 ) ↔ ∀ 𝑦𝑥𝐴 ( 𝑦𝐴𝑥 = 𝑦 ) )
2 df-ral ( ∀ 𝑦𝐴 𝑥 = 𝑦 ↔ ∀ 𝑦 ( 𝑦𝐴𝑥 = 𝑦 ) )
3 2 ralbii ( ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ↔ ∀ 𝑥𝐴𝑦 ( 𝑦𝐴𝑥 = 𝑦 ) )
4 alcom ( ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦𝑥 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
5 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
6 5 mo4 ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
7 df-ral ( ∀ 𝑥𝐴 ( 𝑦𝐴𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝑦𝐴𝑥 = 𝑦 ) ) )
8 impexp ( ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥𝐴 → ( 𝑦𝐴𝑥 = 𝑦 ) ) )
9 8 albii ( ∀ 𝑥 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝑦𝐴𝑥 = 𝑦 ) ) )
10 7 9 bitr4i ( ∀ 𝑥𝐴 ( 𝑦𝐴𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
11 10 albii ( ∀ 𝑦𝑥𝐴 ( 𝑦𝐴𝑥 = 𝑦 ) ↔ ∀ 𝑦𝑥 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) )
12 4 6 11 3bitr4i ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑦𝑥𝐴 ( 𝑦𝐴𝑥 = 𝑦 ) )
13 1 3 12 3bitr4ri ( ∃* 𝑥 𝑥𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥 = 𝑦 )