| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ) |
| 3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ) |
| 4 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 5 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 6 |
5
|
mo4 |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 7 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ) ) |
| 8 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ) ) |
| 10 |
7 9
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 11 |
10
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 12 |
4 6 11
|
3bitr4i |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐴 → 𝑥 = 𝑦 ) ) |
| 13 |
1 3 12
|
3bitr4ri |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ) |