Step |
Hyp |
Ref |
Expression |
1 |
|
moeq3.1 |
⊢ 𝐵 ∈ V |
2 |
|
moeq3.2 |
⊢ 𝐶 ∈ V |
3 |
|
moeq3.3 |
⊢ ¬ ( 𝜑 ∧ 𝜓 ) |
4 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
6 |
|
biidd |
⊢ ( 𝑦 = 𝐴 → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
7 |
|
biidd |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜓 ∧ 𝑥 = 𝐶 ) ↔ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
8 |
5 6 7
|
3orbi123d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
9 |
8
|
eubidv |
⊢ ( 𝑦 = 𝐴 → ( ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
10 |
|
vex |
⊢ 𝑦 ∈ V |
11 |
10 1 2 3
|
eueq3 |
⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |
12 |
9 11
|
vtoclg |
⊢ ( 𝐴 ∈ V → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
13 |
|
eumo |
⊢ ( ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
14 |
12 13
|
syl |
⊢ ( 𝐴 ∈ V → ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
15 |
|
eqvisset |
⊢ ( 𝑥 = 𝐴 → 𝐴 ∈ V ) |
16 |
|
pm2.21 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∈ V → 𝑥 = 𝑦 ) ) |
17 |
15 16
|
syl5 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑥 = 𝐴 → 𝑥 = 𝑦 ) ) |
18 |
17
|
anim2d |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜑 ∧ 𝑥 = 𝑦 ) ) ) |
19 |
18
|
orim1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) ) |
20 |
|
3orass |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
21 |
|
3orass |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
22 |
19 20 21
|
3imtr4g |
⊢ ( ¬ 𝐴 ∈ V → ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
23 |
22
|
alrimiv |
⊢ ( ¬ 𝐴 ∈ V → ∀ 𝑥 ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
24 |
|
euimmo |
⊢ ( ∀ 𝑥 ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) → ( ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
25 |
23 11 24
|
mpisyl |
⊢ ( ¬ 𝐴 ∈ V → ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
26 |
14 25
|
pm2.61i |
⊢ ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |