Metamath Proof Explorer


Theorem moeuex

Description: Uniqueness implies that existence is equivalent to unique existence. (Contributed by BJ, 7-Oct-2022)

Ref Expression
Assertion moeuex ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-eu ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) )
2 1 rbaibr ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) )