Step |
Hyp |
Ref |
Expression |
1 |
|
moexexlem.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
moexexlem.2 |
⊢ Ⅎ 𝑦 ∃* 𝑥 𝜑 |
3 |
|
moexexlem.3 |
⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) |
4 |
|
nfmo1 |
⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 |
5 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∃* 𝑦 𝜓 |
6 |
5 3
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
7 |
|
mopick |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |
8 |
7
|
ex |
⊢ ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
9 |
8
|
com23 |
⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) ) ) |
10 |
2 1 9
|
alrimd |
⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) ) ) |
11 |
|
moim |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) → ( ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
12 |
11
|
spsd |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
13 |
10 12
|
syl6 |
⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
14 |
4 6 13
|
exlimd |
⊢ ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
15 |
1
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑥 𝜑 |
16 |
|
exsimpl |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) |
17 |
15 16
|
exlimi |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) |
18 |
|
nexmo |
⊢ ( ¬ ∃ 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
19 |
17 18
|
nsyl5 |
⊢ ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
20 |
19
|
a1d |
⊢ ( ¬ ∃ 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
21 |
14 20
|
pm2.61d1 |
⊢ ( ∃* 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
22 |
21
|
imp |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∀ 𝑥 ∃* 𝑦 𝜓 ) → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |