| Step |
Hyp |
Ref |
Expression |
| 1 |
|
moexexlem.1 |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
moexexlem.2 |
⊢ Ⅎ 𝑦 ∃* 𝑥 𝜑 |
| 3 |
|
moexexlem.3 |
⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) |
| 4 |
|
nfmo1 |
⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 |
| 5 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∃* 𝑦 𝜓 |
| 6 |
5 3
|
nfim |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 7 |
|
mopick |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |
| 8 |
7
|
ex |
⊢ ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
| 9 |
8
|
com23 |
⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) ) ) |
| 10 |
2 1 9
|
alrimd |
⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) ) ) |
| 11 |
|
moim |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) → ( ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 12 |
11
|
spsd |
⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜓 ) → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 13 |
10 12
|
syl6 |
⊢ ( ∃* 𝑥 𝜑 → ( 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 14 |
4 6 13
|
exlimd |
⊢ ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 15 |
1
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑥 𝜑 |
| 16 |
|
exsimpl |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) |
| 17 |
15 16
|
exlimi |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) |
| 18 |
|
nexmo |
⊢ ( ¬ ∃ 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 19 |
17 18
|
nsyl5 |
⊢ ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 20 |
19
|
a1d |
⊢ ( ¬ ∃ 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 21 |
14 20
|
pm2.61d1 |
⊢ ( ∃* 𝑥 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜓 → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 22 |
21
|
imp |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∀ 𝑥 ∃* 𝑦 𝜓 ) → ∃* 𝑦 ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |