| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 |  | eqeq2 | ⊢ ( 𝑔  =  ∅  →  ( 𝑓  =  𝑔  ↔  𝑓  =  ∅ ) ) | 
						
							| 3 | 2 | imbi2d | ⊢ ( 𝑔  =  ∅  →  ( ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  𝑔 )  ↔  ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  ∅ ) ) ) | 
						
							| 4 | 3 | albidv | ⊢ ( 𝑔  =  ∅  →  ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  𝑔 )  ↔  ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  ∅ ) ) ) | 
						
							| 5 | 1 4 | spcev | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  ∅ )  →  ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  𝑔 ) ) | 
						
							| 6 |  | f00 | ⊢ ( 𝑓 : 𝐴 ⟶ ∅  ↔  ( 𝑓  =  ∅  ∧  𝐴  =  ∅ ) ) | 
						
							| 7 | 6 | simplbi | ⊢ ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  ∅ ) | 
						
							| 8 | 5 7 | mpg | ⊢ ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  𝑔 ) | 
						
							| 9 |  | df-mo | ⊢ ( ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅  ↔  ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅  →  𝑓  =  𝑔 ) ) | 
						
							| 10 | 8 9 | mpbir | ⊢ ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅ |