Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
eqeq2 |
⊢ ( 𝑔 = ∅ → ( 𝑓 = 𝑔 ↔ 𝑓 = ∅ ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑔 = ∅ → ( ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) ↔ ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ ) ) ) |
4 |
3
|
albidv |
⊢ ( 𝑔 = ∅ → ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) ↔ ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ ) ) ) |
5 |
1 4
|
spcev |
⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ ) → ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) ) |
6 |
|
f00 |
⊢ ( 𝑓 : 𝐴 ⟶ ∅ ↔ ( 𝑓 = ∅ ∧ 𝐴 = ∅ ) ) |
7 |
6
|
simplbi |
⊢ ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ ) |
8 |
5 7
|
mpg |
⊢ ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) |
9 |
|
df-mo |
⊢ ( ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅ ↔ ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = 𝑔 ) ) |
10 |
8 9
|
mpbir |
⊢ ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅ |