Metamath Proof Explorer


Theorem mof02

Description: A variant of mof0 . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Assertion mof02 ( 𝐵 = ∅ → ∃* 𝑓 𝑓 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 mof0 ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅
2 feq3 ( 𝐵 = ∅ → ( 𝑓 : 𝐴𝐵𝑓 : 𝐴 ⟶ ∅ ) )
3 2 mobidv ( 𝐵 = ∅ → ( ∃* 𝑓 𝑓 : 𝐴𝐵 ↔ ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅ ) )
4 1 3 mpbiri ( 𝐵 = ∅ → ∃* 𝑓 𝑓 : 𝐴𝐵 )