Metamath Proof Explorer


Theorem mof0ALT

Description: Alternate proof for mof0 with stronger requirements on distinct variables. Uses mo4 . (Contributed by Zhi Wang, 19-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mof0ALT ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅

Proof

Step Hyp Ref Expression
1 f00 ( 𝑓 : 𝐴 ⟶ ∅ ↔ ( 𝑓 = ∅ ∧ 𝐴 = ∅ ) )
2 1 simplbi ( 𝑓 : 𝐴 ⟶ ∅ → 𝑓 = ∅ )
3 f00 ( 𝑔 : 𝐴 ⟶ ∅ ↔ ( 𝑔 = ∅ ∧ 𝐴 = ∅ ) )
4 3 simplbi ( 𝑔 : 𝐴 ⟶ ∅ → 𝑔 = ∅ )
5 eqtr3 ( ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) → 𝑓 = 𝑔 )
6 2 4 5 syl2an ( ( 𝑓 : 𝐴 ⟶ ∅ ∧ 𝑔 : 𝐴 ⟶ ∅ ) → 𝑓 = 𝑔 )
7 6 gen2 𝑓𝑔 ( ( 𝑓 : 𝐴 ⟶ ∅ ∧ 𝑔 : 𝐴 ⟶ ∅ ) → 𝑓 = 𝑔 )
8 feq1 ( 𝑓 = 𝑔 → ( 𝑓 : 𝐴 ⟶ ∅ ↔ 𝑔 : 𝐴 ⟶ ∅ ) )
9 8 mo4 ( ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅ ↔ ∀ 𝑓𝑔 ( ( 𝑓 : 𝐴 ⟶ ∅ ∧ 𝑔 : 𝐴 ⟶ ∅ ) → 𝑓 = 𝑔 ) )
10 7 9 mpbir ∃* 𝑓 𝑓 : 𝐴 ⟶ ∅