| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mofeu.1 | ⊢ 𝐺  =  ( 𝐴  ×  𝐵 ) | 
						
							| 2 |  | mofeu.2 | ⊢ ( 𝜑  →  ( 𝐵  =  ∅  →  𝐴  =  ∅ ) ) | 
						
							| 3 |  | mofeu.3 | ⊢ ( 𝜑  →  ∃* 𝑥 𝑥  ∈  𝐵 ) | 
						
							| 4 | 2 | imp | ⊢ ( ( 𝜑  ∧  𝐵  =  ∅ )  →  𝐴  =  ∅ ) | 
						
							| 5 |  | f00 | ⊢ ( 𝐹 : 𝐴 ⟶ ∅  ↔  ( 𝐹  =  ∅  ∧  𝐴  =  ∅ ) ) | 
						
							| 6 | 5 | rbaib | ⊢ ( 𝐴  =  ∅  →  ( 𝐹 : 𝐴 ⟶ ∅  ↔  𝐹  =  ∅ ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( ( 𝜑  ∧  𝐵  =  ∅ )  →  ( 𝐹 : 𝐴 ⟶ ∅  ↔  𝐹  =  ∅ ) ) | 
						
							| 8 |  | feq3 | ⊢ ( 𝐵  =  ∅  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹 : 𝐴 ⟶ ∅ ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝐵  =  ∅ )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹 : 𝐴 ⟶ ∅ ) ) | 
						
							| 10 |  | xpeq2 | ⊢ ( 𝐵  =  ∅  →  ( 𝐴  ×  𝐵 )  =  ( 𝐴  ×  ∅ ) ) | 
						
							| 11 |  | xp0 | ⊢ ( 𝐴  ×  ∅ )  =  ∅ | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( 𝐵  =  ∅  →  ( 𝐴  ×  𝐵 )  =  ∅ ) | 
						
							| 13 | 1 12 | eqtrid | ⊢ ( 𝐵  =  ∅  →  𝐺  =  ∅ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝐵  =  ∅ )  →  𝐺  =  ∅ ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝐵  =  ∅ )  →  ( 𝐹  =  𝐺  ↔  𝐹  =  ∅ ) ) | 
						
							| 16 | 7 9 15 | 3bitr4d | ⊢ ( ( 𝜑  ∧  𝐵  =  ∅ )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹  =  𝐺 ) ) | 
						
							| 17 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  𝐵  =  { 𝑦 } )  ↔  ( 𝜑  ∧  ∃ 𝑦 𝐵  =  { 𝑦 } ) ) | 
						
							| 18 |  | fconst2g | ⊢ ( 𝑦  ∈  V  →  ( 𝐹 : 𝐴 ⟶ { 𝑦 }  ↔  𝐹  =  ( 𝐴  ×  { 𝑦 } ) ) ) | 
						
							| 19 | 18 | elv | ⊢ ( 𝐹 : 𝐴 ⟶ { 𝑦 }  ↔  𝐹  =  ( 𝐴  ×  { 𝑦 } ) ) | 
						
							| 20 |  | feq3 | ⊢ ( 𝐵  =  { 𝑦 }  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹 : 𝐴 ⟶ { 𝑦 } ) ) | 
						
							| 21 |  | xpeq2 | ⊢ ( 𝐵  =  { 𝑦 }  →  ( 𝐴  ×  𝐵 )  =  ( 𝐴  ×  { 𝑦 } ) ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝐵  =  { 𝑦 }  →  ( 𝐹  =  ( 𝐴  ×  𝐵 )  ↔  𝐹  =  ( 𝐴  ×  { 𝑦 } ) ) ) | 
						
							| 23 | 20 22 | bibi12d | ⊢ ( 𝐵  =  { 𝑦 }  →  ( ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹  =  ( 𝐴  ×  𝐵 ) )  ↔  ( 𝐹 : 𝐴 ⟶ { 𝑦 }  ↔  𝐹  =  ( 𝐴  ×  { 𝑦 } ) ) ) ) | 
						
							| 24 | 19 23 | mpbiri | ⊢ ( 𝐵  =  { 𝑦 }  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹  =  ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 25 | 1 | eqeq2i | ⊢ ( 𝐹  =  𝐺  ↔  𝐹  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 26 | 24 25 | bitr4di | ⊢ ( 𝐵  =  { 𝑦 }  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹  =  𝐺 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  𝐵  =  { 𝑦 } )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹  =  𝐺 ) ) | 
						
							| 28 | 27 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  𝐵  =  { 𝑦 } )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹  =  𝐺 ) ) | 
						
							| 29 | 17 28 | sylbir | ⊢ ( ( 𝜑  ∧  ∃ 𝑦 𝐵  =  { 𝑦 } )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹  =  𝐺 ) ) | 
						
							| 30 |  | mo0sn | ⊢ ( ∃* 𝑥 𝑥  ∈  𝐵  ↔  ( 𝐵  =  ∅  ∨  ∃ 𝑦 𝐵  =  { 𝑦 } ) ) | 
						
							| 31 | 3 30 | sylib | ⊢ ( 𝜑  →  ( 𝐵  =  ∅  ∨  ∃ 𝑦 𝐵  =  { 𝑦 } ) ) | 
						
							| 32 | 16 29 31 | mpjaodan | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  𝐹  =  𝐺 ) ) |