Description: There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | mofmo | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo0sn | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ ( 𝐵 = ∅ ∨ ∃ 𝑦 𝐵 = { 𝑦 } ) ) | |
2 | mof02 | ⊢ ( 𝐵 = ∅ → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | |
3 | mofsn2 | ⊢ ( 𝐵 = { 𝑦 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | |
4 | 3 | exlimiv | ⊢ ( ∃ 𝑦 𝐵 = { 𝑦 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |
5 | 2 4 | jaoi | ⊢ ( ( 𝐵 = ∅ ∨ ∃ 𝑦 𝐵 = { 𝑦 } ) → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |
6 | 1 5 | sylbi | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |