Metamath Proof Explorer


Theorem mofmo

Description: There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mofmo ( ∃* 𝑥 𝑥𝐵 → ∃* 𝑓 𝑓 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 mo0sn ( ∃* 𝑥 𝑥𝐵 ↔ ( 𝐵 = ∅ ∨ ∃ 𝑦 𝐵 = { 𝑦 } ) )
2 mof02 ( 𝐵 = ∅ → ∃* 𝑓 𝑓 : 𝐴𝐵 )
3 mofsn2 ( 𝐵 = { 𝑦 } → ∃* 𝑓 𝑓 : 𝐴𝐵 )
4 3 exlimiv ( ∃ 𝑦 𝐵 = { 𝑦 } → ∃* 𝑓 𝑓 : 𝐴𝐵 )
5 2 4 jaoi ( ( 𝐵 = ∅ ∨ ∃ 𝑦 𝐵 = { 𝑦 } ) → ∃* 𝑓 𝑓 : 𝐴𝐵 )
6 1 5 sylbi ( ∃* 𝑥 𝑥𝐵 → ∃* 𝑓 𝑓 : 𝐴𝐵 )