Step |
Hyp |
Ref |
Expression |
1 |
|
mofsn |
⊢ ( 𝑌 ∈ V → ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝑌 } ) |
2 |
1
|
adantl |
⊢ ( ( 𝐵 = { 𝑌 } ∧ 𝑌 ∈ V ) → ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝑌 } ) |
3 |
|
feq3 |
⊢ ( 𝐵 = { 𝑌 } → ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ 𝑓 : 𝐴 ⟶ { 𝑌 } ) ) |
4 |
3
|
mobidv |
⊢ ( 𝐵 = { 𝑌 } → ( ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ↔ ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝑌 } ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐵 = { 𝑌 } ∧ 𝑌 ∈ V ) → ( ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ↔ ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝑌 } ) ) |
6 |
2 5
|
mpbird |
⊢ ( ( 𝐵 = { 𝑌 } ∧ 𝑌 ∈ V ) → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |
7 |
|
simpl |
⊢ ( ( 𝐵 = { 𝑌 } ∧ ¬ 𝑌 ∈ V ) → 𝐵 = { 𝑌 } ) |
8 |
|
snprc |
⊢ ( ¬ 𝑌 ∈ V ↔ { 𝑌 } = ∅ ) |
9 |
8
|
biimpi |
⊢ ( ¬ 𝑌 ∈ V → { 𝑌 } = ∅ ) |
10 |
9
|
adantl |
⊢ ( ( 𝐵 = { 𝑌 } ∧ ¬ 𝑌 ∈ V ) → { 𝑌 } = ∅ ) |
11 |
7 10
|
eqtrd |
⊢ ( ( 𝐵 = { 𝑌 } ∧ ¬ 𝑌 ∈ V ) → 𝐵 = ∅ ) |
12 |
|
mof02 |
⊢ ( 𝐵 = ∅ → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐵 = { 𝑌 } ∧ ¬ 𝑌 ∈ V ) → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |
14 |
6 13
|
pm2.61dan |
⊢ ( 𝐵 = { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |