Metamath Proof Explorer


Theorem mofsssn

Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Assertion mofsssn ( 𝐵 ⊆ { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 sssn ( 𝐵 ⊆ { 𝑌 } ↔ ( 𝐵 = ∅ ∨ 𝐵 = { 𝑌 } ) )
2 mof02 ( 𝐵 = ∅ → ∃* 𝑓 𝑓 : 𝐴𝐵 )
3 mofsn2 ( 𝐵 = { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴𝐵 )
4 2 3 jaoi ( ( 𝐵 = ∅ ∨ 𝐵 = { 𝑌 } ) → ∃* 𝑓 𝑓 : 𝐴𝐵 )
5 1 4 sylbi ( 𝐵 ⊆ { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴𝐵 )