Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mofsssn | ⊢ ( 𝐵 ⊆ { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sssn | ⊢ ( 𝐵 ⊆ { 𝑌 } ↔ ( 𝐵 = ∅ ∨ 𝐵 = { 𝑌 } ) ) | |
| 2 | mof02 | ⊢ ( 𝐵 = ∅ → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 3 | mofsn2 | ⊢ ( 𝐵 = { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 4 | 2 3 | jaoi | ⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = { 𝑌 } ) → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | 
| 5 | 1 4 | sylbi | ⊢ ( 𝐵 ⊆ { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |