Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | mofsssn | ⊢ ( 𝐵 ⊆ { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn | ⊢ ( 𝐵 ⊆ { 𝑌 } ↔ ( 𝐵 = ∅ ∨ 𝐵 = { 𝑌 } ) ) | |
2 | mof02 | ⊢ ( 𝐵 = ∅ → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | |
3 | mofsn2 | ⊢ ( 𝐵 = { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) | |
4 | 2 3 | jaoi | ⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = { 𝑌 } ) → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |
5 | 1 4 | sylbi | ⊢ ( 𝐵 ⊆ { 𝑌 } → ∃* 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) |