| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) |
| 2 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 3 |
2
|
rexbidv |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 4 |
3
|
2rexbidv |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 5 |
4
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 6 |
|
6nn |
⊢ 6 ∈ ℕ |
| 7 |
6
|
nnzi |
⊢ 6 ∈ ℤ |
| 8 |
7
|
a1i |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → 6 ∈ ℤ ) |
| 9 |
|
evenz |
⊢ ( 𝑛 ∈ Even → 𝑛 ∈ ℤ ) |
| 10 |
|
2z |
⊢ 2 ∈ ℤ |
| 11 |
10
|
a1i |
⊢ ( 𝑛 ∈ Even → 2 ∈ ℤ ) |
| 12 |
9 11
|
zaddcld |
⊢ ( 𝑛 ∈ Even → ( 𝑛 + 2 ) ∈ ℤ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( 𝑛 + 2 ) ∈ ℤ ) |
| 14 |
|
4cn |
⊢ 4 ∈ ℂ |
| 15 |
|
2cn |
⊢ 2 ∈ ℂ |
| 16 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
| 17 |
16
|
eqcomi |
⊢ 6 = ( 4 + 2 ) |
| 18 |
14 15 17
|
mvrraddi |
⊢ ( 6 − 2 ) = 4 |
| 19 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
| 20 |
|
2evenALTV |
⊢ 2 ∈ Even |
| 21 |
|
evenltle |
⊢ ( ( 𝑛 ∈ Even ∧ 2 ∈ Even ∧ 2 < 𝑛 ) → ( 2 + 2 ) ≤ 𝑛 ) |
| 22 |
20 21
|
mp3an2 |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( 2 + 2 ) ≤ 𝑛 ) |
| 23 |
19 22
|
eqbrtrrid |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → 4 ≤ 𝑛 ) |
| 24 |
18 23
|
eqbrtrid |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( 6 − 2 ) ≤ 𝑛 ) |
| 25 |
|
6re |
⊢ 6 ∈ ℝ |
| 26 |
25
|
a1i |
⊢ ( 𝑛 ∈ Even → 6 ∈ ℝ ) |
| 27 |
|
2re |
⊢ 2 ∈ ℝ |
| 28 |
27
|
a1i |
⊢ ( 𝑛 ∈ Even → 2 ∈ ℝ ) |
| 29 |
9
|
zred |
⊢ ( 𝑛 ∈ Even → 𝑛 ∈ ℝ ) |
| 30 |
26 28 29
|
3jca |
⊢ ( 𝑛 ∈ Even → ( 6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( 6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
| 32 |
|
lesubadd |
⊢ ( ( 6 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 6 − 2 ) ≤ 𝑛 ↔ 6 ≤ ( 𝑛 + 2 ) ) ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( ( 6 − 2 ) ≤ 𝑛 ↔ 6 ≤ ( 𝑛 + 2 ) ) ) |
| 34 |
24 33
|
mpbid |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → 6 ≤ ( 𝑛 + 2 ) ) |
| 35 |
|
eluz2 |
⊢ ( ( 𝑛 + 2 ) ∈ ( ℤ≥ ‘ 6 ) ↔ ( 6 ∈ ℤ ∧ ( 𝑛 + 2 ) ∈ ℤ ∧ 6 ≤ ( 𝑛 + 2 ) ) ) |
| 36 |
8 13 34 35
|
syl3anbrc |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( 𝑛 + 2 ) ∈ ( ℤ≥ ‘ 6 ) ) |
| 37 |
|
eqeq1 |
⊢ ( 𝑚 = ( 𝑛 + 2 ) → ( 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 38 |
37
|
rexbidv |
⊢ ( 𝑚 = ( 𝑛 + 2 ) → ( ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 39 |
38
|
2rexbidv |
⊢ ( 𝑚 = ( 𝑛 + 2 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 40 |
39
|
rspcv |
⊢ ( ( 𝑛 + 2 ) ∈ ( ℤ≥ ‘ 6 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 41 |
36 40
|
syl |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 42 |
5 41
|
biimtrid |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 43 |
|
nfv |
⊢ Ⅎ 𝑝 ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) |
| 44 |
|
nfre1 |
⊢ Ⅎ 𝑝 ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) |
| 45 |
|
nfv |
⊢ Ⅎ 𝑞 ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑞 ℙ |
| 47 |
|
nfre1 |
⊢ Ⅎ 𝑞 ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) |
| 48 |
46 47
|
nfrexw |
⊢ Ⅎ 𝑞 ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) |
| 49 |
|
simplrl |
⊢ ( ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) ∧ 𝑟 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
| 50 |
|
simplrr |
⊢ ( ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) ∧ 𝑟 ∈ ℙ ) → 𝑞 ∈ ℙ ) |
| 51 |
|
simpr |
⊢ ( ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) ∧ 𝑟 ∈ ℙ ) → 𝑟 ∈ ℙ ) |
| 52 |
49 50 51
|
3jca |
⊢ ( ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) ∧ 𝑟 ∈ ℙ ) → ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ ) ) |
| 53 |
52
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) ∧ 𝑟 ∈ ℙ ) ∧ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ ) ) |
| 54 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) ∧ 𝑟 ∈ ℙ ) ∧ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 𝑛 ∈ Even ) |
| 55 |
|
simpr |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) ∧ 𝑟 ∈ ℙ ) ∧ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
| 56 |
|
mogoldbblem |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ ) ∧ 𝑛 ∈ Even ∧ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑦 ∈ ℙ ∃ 𝑥 ∈ ℙ 𝑛 = ( 𝑦 + 𝑥 ) ) |
| 57 |
|
oveq1 |
⊢ ( 𝑝 = 𝑦 → ( 𝑝 + 𝑞 ) = ( 𝑦 + 𝑞 ) ) |
| 58 |
57
|
eqeq2d |
⊢ ( 𝑝 = 𝑦 → ( 𝑛 = ( 𝑝 + 𝑞 ) ↔ 𝑛 = ( 𝑦 + 𝑞 ) ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑞 = 𝑥 → ( 𝑦 + 𝑞 ) = ( 𝑦 + 𝑥 ) ) |
| 60 |
59
|
eqeq2d |
⊢ ( 𝑞 = 𝑥 → ( 𝑛 = ( 𝑦 + 𝑞 ) ↔ 𝑛 = ( 𝑦 + 𝑥 ) ) ) |
| 61 |
58 60
|
cbvrex2vw |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ↔ ∃ 𝑦 ∈ ℙ ∃ 𝑥 ∈ ℙ 𝑛 = ( 𝑦 + 𝑥 ) ) |
| 62 |
56 61
|
sylibr |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ ) ∧ 𝑛 ∈ Even ∧ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) |
| 63 |
53 54 55 62
|
syl3anc |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) ∧ 𝑟 ∈ ℙ ) ∧ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) |
| 64 |
63
|
rexlimdva2 |
⊢ ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) → ( ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 65 |
64
|
expr |
⊢ ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑞 ∈ ℙ → ( ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 66 |
45 48 65
|
rexlimd |
⊢ ( ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 67 |
66
|
ex |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( 𝑝 ∈ ℙ → ( ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 68 |
43 44 67
|
rexlimd |
⊢ ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( 𝑛 + 2 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 69 |
42 68
|
syldc |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ( ( 𝑛 ∈ Even ∧ 2 < 𝑛 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 70 |
69
|
expd |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ( 𝑛 ∈ Even → ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 71 |
1 70
|
ralrimi |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |