Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | moi.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| moi.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | moi | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝐴 = 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | moi.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | moi.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | 1 2 | mob | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝐴 = 𝐵 ↔ 𝜒 ) ) | 
| 4 | 3 | biimprd | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ 𝜓 ) → ( 𝜒 → 𝐴 = 𝐵 ) ) | 
| 5 | 4 | 3expia | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ) → ( 𝜓 → ( 𝜒 → 𝐴 = 𝐵 ) ) ) | 
| 6 | 5 | impd | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ) → ( ( 𝜓 ∧ 𝜒 ) → 𝐴 = 𝐵 ) ) | 
| 7 | 6 | 3impia | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝐴 = 𝐵 ) |