Metamath Proof Explorer


Theorem moi

Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006)

Ref Expression
Hypotheses moi.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
moi.2 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
Assertion moi ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 moi.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 moi.2 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
3 1 2 mob ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∃* 𝑥 𝜑𝜓 ) → ( 𝐴 = 𝐵𝜒 ) )
4 3 biimprd ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∃* 𝑥 𝜑𝜓 ) → ( 𝜒𝐴 = 𝐵 ) )
5 4 3expia ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∃* 𝑥 𝜑 ) → ( 𝜓 → ( 𝜒𝐴 = 𝐵 ) ) )
6 5 impd ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∃* 𝑥 𝜑 ) → ( ( 𝜓𝜒 ) → 𝐴 = 𝐵 ) )
7 6 3impia ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ∃* 𝑥 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝐴 = 𝐵 )