Metamath Proof Explorer


Theorem moi2

Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008)

Ref Expression
Hypothesis moi2.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion moi2 ( ( ( 𝐴𝐵 ∧ ∃* 𝑥 𝜑 ) ∧ ( 𝜑𝜓 ) ) → 𝑥 = 𝐴 )

Proof

Step Hyp Ref Expression
1 moi2.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 mob2 ( ( 𝐴𝐵 ∧ ∃* 𝑥 𝜑𝜑 ) → ( 𝑥 = 𝐴𝜓 ) )
3 2 3expa ( ( ( 𝐴𝐵 ∧ ∃* 𝑥 𝜑 ) ∧ 𝜑 ) → ( 𝑥 = 𝐴𝜓 ) )
4 3 biimprd ( ( ( 𝐴𝐵 ∧ ∃* 𝑥 𝜑 ) ∧ 𝜑 ) → ( 𝜓𝑥 = 𝐴 ) )
5 4 impr ( ( ( 𝐴𝐵 ∧ ∃* 𝑥 𝜑 ) ∧ ( 𝜑𝜓 ) ) → 𝑥 = 𝐴 )