Metamath Proof Explorer


Theorem moim

Description: The at-most-one quantifier reverses implication. (Contributed by NM, 22-Apr-1995)

Ref Expression
Assertion moim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 imim1 ( ( 𝜑𝜓 ) → ( ( 𝜓𝑥 = 𝑦 ) → ( 𝜑𝑥 = 𝑦 ) ) )
2 1 al2imi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜓𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
3 2 eximdv ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑦𝑥 ( 𝜓𝑥 = 𝑦 ) → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
4 df-mo ( ∃* 𝑥 𝜓 ↔ ∃ 𝑦𝑥 ( 𝜓𝑥 = 𝑦 ) )
5 df-mo ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
6 3 4 5 3imtr4g ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 ) )