Description: The at-most-one quantifier reverses implication. (Contributed by NM, 22-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moim | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) ) | |
| 2 | 1 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜓 → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 3 | 2 | eximdv | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑦 ∀ 𝑥 ( 𝜓 → 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 4 | df-mo | ⊢ ( ∃* 𝑥 𝜓 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜓 → 𝑥 = 𝑦 ) ) | |
| 5 | df-mo | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 6 | 3 4 5 | 3imtr4g | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 ) ) |