Metamath Proof Explorer
Description: The at-most-one quantifier reverses implication, deduction form.
(Contributed by Thierry Arnoux, 25-Feb-2017)
|
|
Ref |
Expression |
|
Hypothesis |
moimdv.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
Assertion |
moimdv |
⊢ ( 𝜑 → ( ∃* 𝑥 𝜒 → ∃* 𝑥 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
moimdv.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
1
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
3 |
|
moim |
⊢ ( ∀ 𝑥 ( 𝜓 → 𝜒 ) → ( ∃* 𝑥 𝜒 → ∃* 𝑥 𝜓 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → ( ∃* 𝑥 𝜒 → ∃* 𝑥 𝜓 ) ) |