Metamath Proof Explorer


Theorem moimi

Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006) Remove use of ax-5 . (Revised by Steven Nguyen, 9-May-2023)

Ref Expression
Hypothesis moimi.1 ( 𝜑𝜓 )
Assertion moimi ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 moimi.1 ( 𝜑𝜓 )
2 1 imim1i ( ( 𝜓𝑥 = 𝑦 ) → ( 𝜑𝑥 = 𝑦 ) )
3 2 alimi ( ∀ 𝑥 ( 𝜓𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
4 3 eximi ( ∃ 𝑦𝑥 ( 𝜓𝑥 = 𝑦 ) → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
5 df-mo ( ∃* 𝑥 𝜓 ↔ ∃ 𝑦𝑥 ( 𝜓𝑥 = 𝑦 ) )
6 df-mo ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
7 4 5 6 3imtr4i ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 )