| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equequ2 |
⊢ ( 𝑦 = 𝑡 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑡 ) ) |
| 2 |
1
|
imbi2d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝑡 ) ) ) |
| 3 |
2
|
albidv |
⊢ ( 𝑦 = 𝑡 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑡 ) ) ) |
| 4 |
3
|
cbvexvw |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∃ 𝑡 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑡 ) ) |
| 5 |
|
equequ2 |
⊢ ( 𝑡 = 𝑧 → ( 𝑥 = 𝑡 ↔ 𝑥 = 𝑧 ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝜑 → 𝑥 = 𝑡 ) ↔ ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 7 |
6
|
albidv |
⊢ ( 𝑡 = 𝑧 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑡 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 8 |
7
|
cbvexvw |
⊢ ( ∃ 𝑡 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑡 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 9 |
4 8
|
bitri |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) |