| Step | Hyp | Ref | Expression | 
						
							| 1 |  | equequ2 | ⊢ ( 𝑦  =  𝑡  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝑡 ) ) | 
						
							| 2 | 1 | imbi2d | ⊢ ( 𝑦  =  𝑡  →  ( ( 𝜑  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  𝑥  =  𝑡 ) ) ) | 
						
							| 3 | 2 | albidv | ⊢ ( 𝑦  =  𝑡  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑡 ) ) ) | 
						
							| 4 | 3 | cbvexvw | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∃ 𝑡 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑡 ) ) | 
						
							| 5 |  | equequ2 | ⊢ ( 𝑡  =  𝑧  →  ( 𝑥  =  𝑡  ↔  𝑥  =  𝑧 ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑡  =  𝑧  →  ( ( 𝜑  →  𝑥  =  𝑡 )  ↔  ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 7 | 6 | albidv | ⊢ ( 𝑡  =  𝑧  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑡 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 8 | 7 | cbvexvw | ⊢ ( ∃ 𝑡 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑡 )  ↔  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) | 
						
							| 9 | 4 8 | bitri | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) |