| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mon1pid.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
mon1pid.o |
⊢ 1 = ( 1r ‘ 𝑃 ) |
| 3 |
|
mon1pid.m |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
| 4 |
|
mon1pid.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 5 |
1
|
ply1nz |
⊢ ( 𝑅 ∈ NzRing → 𝑃 ∈ NzRing ) |
| 6 |
|
nzrring |
⊢ ( 𝑃 ∈ NzRing → 𝑃 ∈ Ring ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 8 |
7 2
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → 1 ∈ ( Base ‘ 𝑃 ) ) |
| 9 |
5 6 8
|
3syl |
⊢ ( 𝑅 ∈ NzRing → 1 ∈ ( Base ‘ 𝑃 ) ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 11 |
2 10
|
nzrnz |
⊢ ( 𝑃 ∈ NzRing → 1 ≠ ( 0g ‘ 𝑃 ) ) |
| 12 |
5 11
|
syl |
⊢ ( 𝑅 ∈ NzRing → 1 ≠ ( 0g ‘ 𝑃 ) ) |
| 13 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 14 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 15 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 16 |
1 14 15 2
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 17 |
13 16
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 18 |
17
|
fveq2d |
⊢ ( 𝑅 ∈ NzRing → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( coe1 ‘ 1 ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 20 |
19 15
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 22 |
1 14 19 21
|
coe1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 23 |
13 20 22
|
syl2anc2 |
⊢ ( 𝑅 ∈ NzRing → ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 24 |
18 23
|
eqtr3d |
⊢ ( 𝑅 ∈ NzRing → ( coe1 ‘ 1 ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 25 |
17
|
fveq2d |
⊢ ( 𝑅 ∈ NzRing → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐷 ‘ 1 ) ) |
| 26 |
13 20
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
15 21
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 28 |
4 1 19 14 21
|
deg1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = 0 ) |
| 29 |
13 26 27 28
|
syl3anc |
⊢ ( 𝑅 ∈ NzRing → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = 0 ) |
| 30 |
25 29
|
eqtr3d |
⊢ ( 𝑅 ∈ NzRing → ( 𝐷 ‘ 1 ) = 0 ) |
| 31 |
24 30
|
fveq12d |
⊢ ( 𝑅 ∈ NzRing → ( ( coe1 ‘ 1 ) ‘ ( 𝐷 ‘ 1 ) ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) ) |
| 32 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 33 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 34 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 35 |
|
fvex |
⊢ ( 1r ‘ 𝑅 ) ∈ V |
| 36 |
33 34 35
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = ( 1r ‘ 𝑅 ) ) |
| 37 |
32 36
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 0 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ‘ 0 ) = ( 1r ‘ 𝑅 ) |
| 38 |
31 37
|
eqtrdi |
⊢ ( 𝑅 ∈ NzRing → ( ( coe1 ‘ 1 ) ‘ ( 𝐷 ‘ 1 ) ) = ( 1r ‘ 𝑅 ) ) |
| 39 |
1 7 10 4 3 15
|
ismon1p |
⊢ ( 1 ∈ 𝑀 ↔ ( 1 ∈ ( Base ‘ 𝑃 ) ∧ 1 ≠ ( 0g ‘ 𝑃 ) ∧ ( ( coe1 ‘ 1 ) ‘ ( 𝐷 ‘ 1 ) ) = ( 1r ‘ 𝑅 ) ) ) |
| 40 |
9 12 38 39
|
syl3anbrc |
⊢ ( 𝑅 ∈ NzRing → 1 ∈ 𝑀 ) |
| 41 |
40 30
|
jca |
⊢ ( 𝑅 ∈ NzRing → ( 1 ∈ 𝑀 ∧ ( 𝐷 ‘ 1 ) = 0 ) ) |