Metamath Proof Explorer


Theorem mon1pldg

Description: Unitic polynomials have one leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses mon1pldg.d 𝐷 = ( deg1𝑅 )
mon1pldg.o 1 = ( 1r𝑅 )
mon1pldg.m 𝑀 = ( Monic1p𝑅 )
Assertion mon1pldg ( 𝐹𝑀 → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) = 1 )

Proof

Step Hyp Ref Expression
1 mon1pldg.d 𝐷 = ( deg1𝑅 )
2 mon1pldg.o 1 = ( 1r𝑅 )
3 mon1pldg.m 𝑀 = ( Monic1p𝑅 )
4 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
5 eqid ( Base ‘ ( Poly1𝑅 ) ) = ( Base ‘ ( Poly1𝑅 ) )
6 eqid ( 0g ‘ ( Poly1𝑅 ) ) = ( 0g ‘ ( Poly1𝑅 ) )
7 4 5 6 1 3 2 ismon1p ( 𝐹𝑀 ↔ ( 𝐹 ∈ ( Base ‘ ( Poly1𝑅 ) ) ∧ 𝐹 ≠ ( 0g ‘ ( Poly1𝑅 ) ) ∧ ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) = 1 ) )
8 7 simp3bi ( 𝐹𝑀 → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) = 1 )