Step |
Hyp |
Ref |
Expression |
1 |
|
mon1puc1p.c |
⊢ 𝐶 = ( Unic1p ‘ 𝑅 ) |
2 |
|
mon1puc1p.m |
⊢ 𝑀 = ( Monic1p ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
5 |
3 4 2
|
mon1pcl |
⊢ ( 𝑋 ∈ 𝑀 → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀 ) → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
7 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) = ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) |
8 |
3 7 2
|
mon1pn0 |
⊢ ( 𝑋 ∈ 𝑀 → 𝑋 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀 ) → 𝑋 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ) |
10 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
12 |
10 11 2
|
mon1pldg |
⊢ ( 𝑋 ∈ 𝑀 → ( ( coe1 ‘ 𝑋 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀 ) → ( ( coe1 ‘ 𝑋 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
14 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
15 |
14 11
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀 ) → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
17 |
13 16
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀 ) → ( ( coe1 ‘ 𝑋 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑋 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
18 |
3 4 7 10 1 14
|
isuc1p |
⊢ ( 𝑋 ∈ 𝐶 ↔ ( 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑋 ≠ ( 0g ‘ ( Poly1 ‘ 𝑅 ) ) ∧ ( ( coe1 ‘ 𝑋 ) ‘ ( ( deg1 ‘ 𝑅 ) ‘ 𝑋 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) |
19 |
6 9 17 18
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀 ) → 𝑋 ∈ 𝐶 ) |